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Have that in classical case, single letter formula
exists for (block-coding) capacity, by additivity.

HSW Theorem: Maximum

lolevo information

gives classical capacity for guantum channel
when product states are used.
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If Holevo is additive, then it is a plausible formula
for classical channel capacity of a quantum

channel.



Equivalence of Additivity
Conjectures (Shor, 2003)

» Additivity of minimum entropy output
« Additivity of Holevo capacity
« Additivity of Entanglement of Formation

« Strong superadditivity of Entanglement of
Formation
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Hastings, 2008

* Minimum output entropy easier to work with than
Holevo information:

H™" (&) = IﬂgﬂH (E( ¥)¥ 1))

e Constructs two channels such that minimum output
entropy of product channel is less than sum of
individual minimum output entropies (probabilities and
unitaries are randomly chosen):

D
E(p) = PUpU;
i=1

D
E(p):=)  PUpU,
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The unitary operators are chosen from the unitary
group of order N via the Haar measure.
The probabilities are chosen via:

P =13/L7
for distributions
P(l;) oc 2Nt exp(—= N DI?)

This is the same as choosing the I's from a
Gaussian random variable on N complex
dimensions.



Main Result

We have, for unitaries and probabilities selected
from some distribution,

Hmin((c; ® z) < Hmin((c;) I+ Hmin(z) — szin((c;)

Which implies via equivalence of additivity
conjectures that Holevo information is non-
additive.



Recall the maximally mixed state:
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Lemma 1: Have that
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Hence, minimum output entropy is also bounded.



Lemma 2: Hard Bound

If {U;} are chosen randomly from the set of unitary matrices
of size N, and {l;} are chosen randomly as above, then

]P;(Hmlrl(g ) < 111( ) _ (’)‘Srnax) < 1

for an appropriate choice of ¢1 and py (in the definition of S™*) and for
1 < D < N. This in particular tmplies that we obtain a counter-example
to the additivity conjecture once D and N are sufficiently large, i.e. there

exist D and N such that for D < D and N < N the above holds and a
counter-example to additivity exists.
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Conclusion

* Proof is probabilistic, and hence
nonconstructive. Have lower bounds on size of

D.

* The Holevo information is additive for certain
classes of channels: entanglement-breaking
and depolarizing channels are Holevo additive.

 Alternative proofs exist; i.e. Via Dvoretzky's
theorem in functional analysis.



Open Problems

* A (computable) formula for the classical
capacity that accounts for entanglement across
iInput spaces

» Shor asked about the additivity of the following:

max \H (p) — H(E(p))



