Capacity Formula for Quantum Channels

Raza Ali Kazmi

McGill University, School of Computer Science, Comp-598 presentation, April 8, 2011.

Three Qbit Bit-Flip Codes

- Alice wants to send Bob a state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ through a bit-flip channel.
- Let channel flip the bit with probability 0
- •Alice compute $|\psi\rangle|00\rangle = \alpha|000\rangle + \beta|100\rangle$
- •Alice apply CNot gate from 1st qubit to 2nd and 3rd qubits producing the state $\alpha |000\rangle + \beta |111\rangle$
- •Alice send Bob the state through the channel

Degenerate Codes

 Degeneracy is a property of Codes and a family of errors it design to correct. More formally a code degenerately correct a set of errors <u>E</u> if in addition to correcting <u>E</u>, there are multiple errors in <u>E</u> that are mapped to same syndrome.

Degradable Channels

•A channel is degradable if there exist a map

$$T^{B \rightarrow E}$$

such that for any input state

$$N_c^{A' \to E}(\rho) = T^{B \to E}(N^{A' \to B}(\rho))$$

Properties of Degradable Channels

The Capacity formula for a degradable channel is

$$C_{q} = Q(N) = max_{\phi^{AA'}}I(A > B)_{\rho^{AB}}$$

• For any two degradable channels, coherent information is additive

$$Q(N_1 \otimes N_2) = Q(N_1) + Q(N_2)$$

Pauli Channels

• A Pauli channel maps:

$$\rho \rightarrow (1 - p_x - p_y - p_z)\rho + p_x X \rho X + p_y Y \rho Y + p_z Z \rho Z$$

• A two Pauli channel is a special case of above:

$$\rho \rightarrow (1-p)\rho + (p X \rho X + p Z \rho Z)$$

Quantum Capacity of a Channel

• In quantum world one would hope that the quantum capacity formula *C*_q is given by

$$C_q = Q(N) = \max_{\phi^{AA'}} I(A > B)_{\rho^{AB}}$$

- This rate can be achieve using a random code on typical subspaces.
- However this is not optimal in genral.

- Using degenerate codes Shor and others, shows that $C_q > Q(N)$ (for depolarizing channel). • For p=0.189, Q(N)=0 and then $\frac{1}{5}Q(N^{\otimes 5})>0$

Correct Characterization C_q

• The correct characterization of quantum capacity is given by

$$\lim_{n\to\infty}\frac{1}{n}Q(N^{\otimes n})$$

However the rate they obtain was slightly greater than

$$Q(N) = \max_{\phi^{AA'}} I(A > B)_{\rho^{AB}}$$

Classes of Capacity for Quantum Channels

- The correct characterization of quantum capacity is not very useful. But there are cases where do we have a useful formula.
- We can divide the capacity of quantum channels into three classes.
- Classical Quantum Capacity.
 Entanglement Assisted Capacity.
 Quantum Capacity.

Classes of Quantum Capacity

Classical Capacity	Input	Output	Formula
	С	q	Yes
	q	С	Yes
	q	q	No
Entanglement-Assisted Classical Capacity	q	q	Yes
Quantum Capacity	q	q	No (except degradable)

S.S.D Result

- Recall that shor, Smolin, DiVincenzo show that $C_q > Q(N)$. However difference between was extremely small.
- Smith and Smolin shows for most pauli channels that the difference between C_q and Q(N) is substantial.
- They showed this by creating massive degenerate codes

Non-degradable Channels

- From above discussion one may think:
 - 1) Only degradable channel's capacity can be characterized by single letter formula.
 - 2) There may be no single letter formula in general for non-degradable channels.
 - 3) Capacity of any non-degradable channel cannot be given by coherent information.

Non-Degrability of a Channel

- Smith and Smolin propose a general method for showing that a channel is not degradable
- Based on this method they proved that two Pauli channel is not degradable.
- Yet for two Pauli channel the degenerate codes did not perform any better than nondegenerate codes. In both cases they obtain the rate $Q(N) = max_{\phi^{AA'}}I(A > B)_{\rho^{AB}}$

Conclusion

- A single letter formula for the Capacity is still possible. But what is not possible in general that formula is given by channels coherent information.
- It may also be the case that for some nondegradable channels channels coherent information may fully characterize its capacity.

Bit-Flip Codes

•Bob receives 3 qubits. Their state is one of the following (table). Bob prepared ancilla qubits and carried out Cnot from 1st and 2nd received [00] qubits to 1st ancilla and 1st and 3rd to 2nd ancilla

	Probability	Syndrome	Operation
$\alpha 000 angle+eta 111 angle$	1- <i>p</i> ³	 00)	$I \otimes I \otimes I$
$\alpha 100 angle+eta 011 angle$	<i>p</i> (1- <i>p</i>) ²	 11 >	$X \otimes I \otimes I$
lpha 010 angle + eta 101 angle	<i>p</i> (1- <i>p</i>) ²	 10 >	$I \otimes X \otimes I$
$\alpha 001 angle+eta 110 angle$	<i>p</i> (1- <i>p</i>) ²	01 angle	$I \otimes I \otimes X$
$\alpha 110 angle+eta 001 angle$	<i>p</i> ² (1- <i>p</i>)	01 angle	?
$\alpha 101\rangle + \beta 010\rangle$	<i>p</i> ² (1- <i>p</i>)	10	?
lpha 011 angle + eta 100 angle	<i>p</i> ² (1- <i>p</i>)	 11 >	?
$\alpha 111\rangle + \beta 000\rangle$	p ³	00	?

Complementary Channels

•Let

$$N^{A' \to B}$$

be a noisy channel with isometric extension $U_N^{A' \to BE}$

•A complementary channel is given by

$$N_c^{A' \to E}(\rho) = Tr_B(U_N^{A' \to BE})$$

Capacity Of a Channel

- Capacity of a channel is the tightest upper bound on the amount of information that can reliably transmitted over a channel.
- Classical capacity formula is given by

$$C = max_x I(X, N(X))$$

• The most fundamental problem of information is to obtain a formula for the capacity of a Noisy Channel.

Method for Proving Non-Degeradability

- Let $N^{A' \rightarrow B}$ be a channel and $N_c^{A' \rightarrow E}$ be the complementary channel.
- Compute the map $T^{B \to E}$ such that $NT = N^{C}$
- Compute Choi matrix of T
- If Choi matrix is not completely positive then channel is not-degradable.