Proof of the Choi-Kraus theorem

Mark M. Wilde*

Abstract

We provide a simple proof of the Choi-Kraus theorem (as a reference).

Every evolution of a quantum state should satisfy three properties:

- 1. It should be linear so that we do not allow for signaling (by the steering argument, one could have signaling).
- 2. It should be completely positive so that it takes quantum states to quantum states (even for systems correlated with the one on which the map is acting).
- 3. It should be trace preserving (again so that it takes quantum states to quantum states).

The three requirements above lead naturally to the Choi-Kraus representation theorem, which states that the map has to take a particular form according to a Choi-Kraus decomposition:

Theorem 1 (Choi-Kraus) A map $\mathcal{N}_{A\to B}$ from a finite-dimensional Hilbert space \mathcal{H}_A to a finitedimensional Hilbert space \mathcal{H}_B is linear, completely positive, and trace-preserving if and only if it has a Choi-Kraus decomposition as follows:

$$\mathcal{N}_{A \to B}(X_A) = \sum_{l=0}^{d-1} V_l X_A V_l^{\dagger}, \tag{1}$$

where $X_A : \mathcal{H}_A \to \mathcal{H}_A, V_l : \mathcal{H}_A \to \mathcal{H}_B$ for all $l \in \{0, \ldots, d-1\}$,

$$\sum_{l=0}^{d-1} V_l^{\dagger} V_l = I_A, \tag{2}$$

and $d \leq \dim(\mathcal{H}_A) \dim(\mathcal{H}_B)$.

Proof. We first prove the easier "if-part" of the theorem. So let us suppose that $\mathcal{N}_{A\to B}$ has the form in (1) and that the condition in (2) holds as well. Then $\mathcal{N}_{A\to B}$ is clearly a linear map. It is

^{*}Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology, Louisiana State University

completely positive because $(\mathrm{id}_R \otimes \mathcal{N}_{A \to B})(X_{RA}) \geq 0$ if $X_{RA} \geq 0$ when $\mathcal{N}_{A \to B}$ has the form in (1), and this holds for a reference system R of arbitrary size. That is, consider that

$$(\mathrm{id}_R \otimes \mathcal{N}_{A \to B})(X_{RA}) = \sum_{l=0}^{d-1} (I_R \otimes V_l) X_{RA} (I_R \otimes V_l^{\dagger})$$
(3)

$$=\sum_{l=0}^{d-1} (I_R \otimes V_l) X_{RA} (I_R \otimes V_l)^{\dagger}.$$
(4)

We know that $(I_R \otimes V_l) X_{RA} (I_R \otimes V_l)^{\dagger} \ge 0$ for all l when $X_{RA} \ge 0$, and the same is true for the sum. Trace preservation follows because

$$\operatorname{Tr} \left\{ \mathcal{N}_{A \to B}(X_A) \right\} = \operatorname{Tr} \left\{ \sum_{l=0}^{d-1} V_l X_A V_l^{\dagger} \right\}$$
(5)

$$= \operatorname{Tr}\left\{\sum_{l=0}^{d-1} V_l^{\dagger} V_l X_A\right\}$$
(6)

$$= \operatorname{Tr}\left\{X_A\right\},\tag{7}$$

where the second line is from cyclicity of trace and the last line follows from the condition in (2).

We now prove the more difficult "only-if" part. Let $d_A \equiv \dim(\mathcal{H}_A)$ and $d_B \equiv \dim(\mathcal{H}_B)$. Let $|\Gamma\rangle_{RA}$ denote the following unnormalized maximally entangled vector:

$$|\Gamma\rangle_{RA} \equiv \sum_{i=0}^{d_A-1} |i\rangle_R \otimes |i\rangle_A \,, \tag{8}$$

where $\{|i\rangle_A\}$ is an orthonormal for the A system and $\{|i\rangle_R\}$ is an orthonormal basis for an auxiliary R system. The Choi matrix of a completely-positive, trace-preserving (CPTP) linear map $\mathcal{N}_{A\to B}$ is defined as follows:

$$\mathcal{N}_{A\to B}\left(\left|\Gamma\right\rangle\left\langle\Gamma\right|_{RA}\right) = \sum_{i,j=0}^{d_A-1} \left|i\right\rangle\left\langle j\right|_R \otimes \mathcal{N}_{A\to B}\left(\left|i\right\rangle\left\langle j\right|_A\right).$$
(9)

This matrix completely describes the action of the map because it describes the action of it on every operator $|i\rangle \langle j|_A$, from which we can construct any other operator on which the map acts, due to the fact that $\mathcal{N}_{A\to B}$ is linear (the Choi matrix is a large $d_A d_B \times d_A d_B$ matrix with blocks of the form $\mathcal{N}_{A\to B}(|i\rangle \langle j|_A)$). Also, the above matrix is positive semidefinite due to the requirement that the map is completely positive. So we can diagonalize $\mathcal{N}_{A\to B}(|\Gamma\rangle \langle \Gamma|_{RA})$ as follows:

$$\mathcal{N}_{A\to B}\left(|\Gamma\rangle\left\langle\Gamma\right|_{RA}\right) = \sum_{l=0}^{d-1} |\phi_l\rangle\left\langle\phi_l\right|_{RB},\tag{10}$$

where $d \leq d_A d_B$ is the Choi rank of the map $\mathcal{N}_{A\to B}$. (This decomposition does not necessarily have to be such that the vectors $\{|\phi_l\rangle_{RB}\}$ are orthonormal.) Consider by inspecting (9) that

$$\left(\left\langle i\right|_{R}\otimes I_{B}\right)\left(\mathcal{N}_{A\to B}\left(\left|\Gamma\right\rangle\left\langle\Gamma\right|_{RA}\right)\right)\left(\left|j\right\rangle_{R}\otimes I_{B}\right)=\mathcal{N}_{A\to B}\left(\left|i\right\rangle\left\langle j\right|\right).$$
(11)

Now, consider that for any bipartite vector $|\phi\rangle_{RB}$, we can expand it in terms of an orthonormal basis $\{|j\rangle_B\}$ and the basis $\{|i\rangle_R\}$ given above:

$$|\phi\rangle_{RB} = \sum_{i=0}^{d_A-1} \sum_{j=0}^{d_B-1} \alpha_{ij} |i\rangle_R \otimes |j\rangle_B.$$
(12)

Let $V_{A \to B}$ denote the following linear operator:

$$V_{A \to B} \equiv \sum_{i=0}^{d_A - 1} \sum_{j=0}^{d_B - 1} \alpha_{i,j} |j\rangle_B \langle i|_A, \qquad (13)$$

where $\{|i\rangle_A\}$ is the orthonormal basis given above. Then we see that

$$(I_R \otimes V_{A \to B}) |\Gamma\rangle_{RA} = \sum_{i=0}^{d_A - 1} \sum_{j=0}^{d_B - 1} \alpha_{i,j} |j\rangle_B \langle i|_A \sum_{k=0}^{d_A - 1} |k\rangle_R \otimes |k\rangle_A$$
(14)

$$=\sum_{i=0}^{d_A-1}\sum_{j=0}^{d_B-1}\sum_{k=0}^{d_A-1}\alpha_{i,j}\,|k\rangle_R\otimes|j\rangle_B\,\langle i|k\rangle_A\tag{15}$$

$$=\sum_{i=0}^{d_A-1}\sum_{j=0}^{d_B-1}\alpha_{ij}\left|i\right\rangle_R\otimes\left|j\right\rangle_B\tag{16}$$

$$= |\phi\rangle_{RB} \,. \tag{17}$$

So this means that for all bipartite vectors $|\phi\rangle_{RB}$, we can find a linear operator $V_{A\to B}$ such that $(I_R \otimes V_{A\to B}) |\Gamma\rangle_{RA} = |\phi\rangle_{RB}$. Consider also that

$$\langle i|_R |\phi\rangle_{RB} = \langle i|_R \left(I_R \otimes V_{A \to B}\right) |\Gamma\rangle_{RA} \tag{18}$$

$$= V_{A \to B} \left| i \right\rangle_A. \tag{19}$$

Applying this to our case of interest, for each l, we can write

$$|\phi_l\rangle_{RB} = I_R \otimes (V_l)_{A \to B} |\Gamma\rangle_{RA}, \qquad (20)$$

where $(V_l)_{A\to B}$ is some linear operator of the form in (13). After making this observation, we realize that it is possible to write

$$\mathcal{N}_{A \to B}\left(\left|i\right\rangle\left\langle j\right|\right) = \left(\left\langle i\right|_{R} \otimes I_{B}\right)\left(\mathcal{N}_{A \to B}\left(\left|\Gamma\right\rangle\left\langle\Gamma\right|_{RA}\right)\right)\left(\left|j\right\rangle_{R} \otimes I_{B}\right) \tag{21}$$

$$= \left(\left\langle i \right|_{R} \otimes I_{B} \right) \sum_{l=0}^{m-1} \left| \phi_{l} \right\rangle \left\langle \phi_{l} \right|_{RB} \left(\left| j \right\rangle_{R} \otimes I_{B} \right)$$

$$\tag{22}$$

$$=\sum_{l=0}^{d-1} \left[\left(\langle i|_R \otimes I_B \right) |\phi_l \rangle_{RB} \right] \left[\langle \phi_l |_{RB} \left(|j\rangle_R \otimes I_B \right) \right]$$
(23)

$$=\sum_{l=0}^{d-1} V_l |i\rangle \langle j|_A V_l^{\dagger}.$$
(24)

By linearity of the map $\mathcal{N}_{A\to B}$, it follows that its action on any operator σ can be written as follows:

$$\mathcal{N}_{A\to B}\left(\sigma\right) = \sum_{l=0}^{d-1} V_l \sigma V_l^{\dagger},\tag{25}$$

since any operator σ can be written as a linear combination of operators in the basis $\{|i\rangle \langle j|\}$.

If the decomposition in (10) is a spectral decomposition, then it follows that the Kraus operators $\{V_l\}$ are orthogonal with respect to the Hilbert–Schmidt inner product:

$$\operatorname{Tr}\left\{V_{l}^{\dagger}V_{k}\right\} = \operatorname{Tr}\left\{V_{l}^{\dagger}V_{l}\right\}\delta_{l,k}.$$
(26)

This follows from the fact that

$$\delta_{l,k} \langle \phi_l | \phi_l \rangle = \langle \phi_l | \phi_k \rangle \tag{27}$$

$$= \langle \Gamma |_{RB} \left[I_R \otimes \left(V_l^{\dagger} V_k \right)_B \right] | \Gamma \rangle_{RB}$$
(28)

$$= \operatorname{Tr}\left\{V_l^{\dagger}V_k\right\}.$$
(29)

To prove the condition in (2), let us begin by exploiting the fact that the map $\mathcal{N}_{A\to B}$ is trace preserving, so that

$$\operatorname{Tr} \left\{ \mathcal{N}_{A \to B} \left(\left| i \right\rangle \left\langle j \right|_{A} \right) \right\} = \operatorname{Tr} \left\{ \left| i \right\rangle \left\langle j \right|_{A} \right\} = \delta_{ij}.$$

$$(30)$$

for all operators $\{|i\rangle \langle j|_A\}_{i,j}$. But consider also that

$$\operatorname{Tr}\left\{\mathcal{N}_{A\to B}\left(\left|i\right\rangle\left\langle j\right|_{A}\right)\right\} = \operatorname{Tr}\left\{\sum_{l} V_{l}\left(\left|i\right\rangle\left\langle j\right|_{A}\right) V_{l}^{\dagger}\right\}$$
(31)

$$= \operatorname{Tr}\left\{\sum_{l} V_{l}^{\dagger} V_{l}\left(|i\rangle \langle j|_{A}\right)\right\}$$
(32)

$$= \langle j|_A \sum_l V_l^{\dagger} V_l |i\rangle_A \,. \tag{33}$$

Thus, in order to have consistency with (30), we require that

$$\langle j|_A \sum_l V_l^{\dagger} V_l |i\rangle_A = \delta_{i,j},\tag{34}$$

or equivalently, for (2) to hold. \blacksquare