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Abstract

We provide a simple proof of the Choi-Kraus theorem (as a reference).

Every evolution of a quantum state should satisfy three properties:

1. It should be linear so that we do not allow for signaling (by the steering argument, one could
have signaling).

2. It should be completely positive so that it takes quantum states to quantum states (even for
systems correlated with the one on which the map is acting).

3. It should be trace preserving (again so that it takes quantum states to quantum states).

The three requirements above lead naturally to the Choi-Kraus representation theorem, which
states that the map has to take a particular form according to a Choi-Kraus decomposition:

Theorem 1 (Choi-Kraus) A map NA→B from a finite-dimensional Hilbert space HA to a finite-
dimensional Hilbert space HB is linear, completely positive, and trace-preserving if and only if it
has a Choi-Kraus decomposition as follows:

NA→B(XA) =

d−1∑
l=0

VlXAV
†
l , (1)

where XA : HA → HA, Vl : HA → HB for all l ∈ {0, . . . , d− 1},

d−1∑
l=0

V †l Vl = IA, (2)

and d ≤ dim(HA) dim(HB).

Proof. We first prove the easier “if-part” of the theorem. So let us suppose that NA→B has the
form in (1) and that the condition in (2) holds as well. Then NA→B is clearly a linear map. It is
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completely positive because (idR⊗NA→B)(XRA) ≥ 0 if XRA ≥ 0 when NA→B has the form in (1),
and this holds for a reference system R of arbitrary size. That is, consider that

(idR ⊗NA→B)(XRA) =

d−1∑
l=0

(IR ⊗ Vl)XRA(IR ⊗ V †l ) (3)

=

d−1∑
l=0

(IR ⊗ Vl)XRA(IR ⊗ Vl)†. (4)

We know that (IR ⊗ Vl)XRA(IR ⊗ Vl)† ≥ 0 for all l when XRA ≥ 0, and the same is true for the
sum. Trace preservation follows because

Tr {NA→B(XA)} = Tr

{
d−1∑
l=0

VlXAV
†
l

}
(5)

= Tr

{
d−1∑
l=0

V †l VlXA

}
(6)

= Tr {XA} , (7)

where the second line is from cyclicity of trace and the last line follows from the condition in (2).
We now prove the more difficult “only-if” part. Let dA ≡ dim(HA) and dB ≡ dim(HB). Let

|Γ〉RA denote the following unnormalized maximally entangled vector:

|Γ〉RA ≡
dA−1∑
i=0

|i〉R ⊗ |i〉A , (8)

where {|i〉A} is an orthonormal for the A system and {|i〉R} is an orthonormal basis for an auxiliary
R system. The Choi matrix of a completely-positive, trace-preserving (CPTP) linear map NA→B

is defined as follows:

NA→B (|Γ〉 〈Γ|RA) =

dA−1∑
i,j=0

|i〉 〈j|R ⊗NA→B (|i〉 〈j|A) . (9)

This matrix completely describes the action of the map because it describes the action of it on
every operator |i〉 〈j|A, from which we can construct any other operator on which the map acts,
due to the fact that NA→B is linear (the Choi matrix is a large dAdB × dAdB matrix with blocks of
the form NA→B (|i〉 〈j|A)). Also, the above matrix is positive semidefinite due to the requirement
that the map is completely positive. So we can diagonalize NA→B (|Γ〉 〈Γ|RA) as follows:

NA→B (|Γ〉 〈Γ|RA) =
d−1∑
l=0

|φl〉 〈φl|RB , (10)

where d ≤ dAdB is the Choi rank of the map NA→B. (This decomposition does not necessarily
have to be such that the vectors {|φl〉RB} are orthonormal.) Consider by inspecting (9) that

(〈i|R ⊗ IB) (NA→B (|Γ〉 〈Γ|RA)) (|j〉R ⊗ IB) = NA→B (|i〉 〈j|) . (11)
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Now, consider that for any bipartite vector |φ〉RB, we can expand it in terms of an orthonormal
basis {|j〉B} and the basis {|i〉R} given above:

|φ〉RB =

dA−1∑
i=0

dB−1∑
j=0

αij |i〉R ⊗ |j〉B . (12)

Let VA→B denote the following linear operator:

VA→B ≡
dA−1∑
i=0

dB−1∑
j=0

αi,j |j〉B 〈i|A , (13)

where {|i〉A} is the orthonormal basis given above. Then we see that

(IR ⊗ VA→B) |Γ〉RA =

dA−1∑
i=0

dB−1∑
j=0

αi,j |j〉B 〈i|A
dA−1∑
k=0

|k〉R ⊗ |k〉A (14)

=

dA−1∑
i=0

dB−1∑
j=0

dA−1∑
k=0

αi,j |k〉R ⊗ |j〉B 〈i|k〉A (15)

=

dA−1∑
i=0

dB−1∑
j=0

αij |i〉R ⊗ |j〉B (16)

= |φ〉RB . (17)

So this means that for all bipartite vectors |φ〉RB, we can find a linear operator VA→B such that
(IR ⊗ VA→B) |Γ〉RA = |φ〉RB. Consider also that

〈i|R |φ〉RB = 〈i|R (IR ⊗ VA→B) |Γ〉RA (18)

= VA→B |i〉A . (19)

Applying this to our case of interest, for each l, we can write

|φl〉RB = IR ⊗ (Vl)A→B |Γ〉RA , (20)

where (Vl)A→B is some linear operator of the form in (13). After making this observation, we
realize that it is possible to write

NA→B (|i〉 〈j|) = (〈i|R ⊗ IB) (NA→B (|Γ〉 〈Γ|RA)) (|j〉R ⊗ IB) (21)

= (〈i|R ⊗ IB)

d−1∑
l=0

|φl〉 〈φl|RB (|j〉R ⊗ IB) (22)

=
d−1∑
l=0

[(〈i|R ⊗ IB) |φl〉RB] [〈φl|RB (|j〉R ⊗ IB)] (23)

=
d−1∑
l=0

Vl |i〉 〈j|A V
†
l . (24)
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By linearity of the map NA→B, it follows that its action on any operator σ can be written as follows:

NA→B (σ) =
d−1∑
l=0

VlσV
†
l , (25)

since any operator σ can be written as a linear combination of operators in the basis {|i〉 〈j|}.
If the decomposition in (10) is a spectral decomposition, then it follows that the Kraus operators

{Vl} are orthogonal with respect to the Hilbert–Schmidt inner product:

Tr
{
V †l Vk

}
= Tr

{
V †l Vl

}
δl,k. (26)

This follows from the fact that

δl,k 〈φl|φl〉 = 〈φl|φk〉 (27)

= 〈Γ|RB

[
IR ⊗

(
V †l Vk

)
B

]
|Γ〉RB (28)

= Tr
{
V †l Vk

}
. (29)

To prove the condition in (2), let us begin by exploiting the fact that the map NA→B is trace
preserving, so that

Tr {NA→B (|i〉 〈j|A)} = Tr {|i〉 〈j|A} = δij . (30)

for all operators {|i〉 〈j|A}i,j . But consider also that

Tr {NA→B (|i〉 〈j|A)} = Tr

{∑
l

Vl (|i〉 〈j|A)V †l

}
(31)

= Tr

{∑
l

V †l Vl (|i〉 〈j|A)

}
(32)

= 〈j|A
∑
l

V †l Vl |i〉A . (33)

Thus, in order to have consistency with (30), we require that

〈j|A
∑
l

V †l Vl |i〉A = δi,j , (34)

or equivalently, for (2) to hold.
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