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1 Overview

In the last lecture, we represented faithful Gaussian states as thermal states of quadratic Hamilto-
nians and discussed the Williamson theorem.

In this lecture, we first review a method to find the symplectic eigenvalues of a positive definite
matrix. We then derive a relation between the Hamiltonian matrix and the covariance matrix
corresponding to a faithful Gaussian state. Finally, we determine formulas for the purity and von
Neumann entropy of a Gaussian state. We point readers to [Ser17] for background on some of the
topics covered in this lecture.

2 Symplectic eigenvalues of a positive definite matrix

In this section, we discuss a method to find the symplectic eigenvalues of a positive definite ma-
trix M .

Let Ω denote the real, canonical, anti-symmetric form defined as

Ω = In ⊗ Ω1, (1)

where

Ω1 =

[
0 1
−1 0

]
, (2)

which encodes the canonical commutation relations of the quadrature operators. Note that ΩΩT =
−Ω2 = I.

Let S denote a sympletic matrix such that SΩST = Ω. It follows that such a matrix S is invertible
with inverse given by S−1 = ΩSTΩT . We begin by showing that ΩS = S−TΩ. This is a direct
consequence of the fact that ST is symplectic, which can be seen from the following steps:

SΩST = Ω, (3)

⇒ SΩSTΩ = −I, (4)

⇒ SΩSTΩS = −S, (5)

⇒ S−1SΩSTΩS = −S−1S, (6)

⇒ ΩSTΩS = −I, (7)

⇒ STΩS = Ω . (8)
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It then follows that

ΩS = S−TΩ. (9)

As discussed in the previous lecture, a positive definite 2n × 2n matrix M has the following sym-
plectic decomposition:

M = SDST , (10)

where dj > 0 for all j ∈ {1, . . . , n},

D =
n⊕
j=1

dj

[
1 0
0 1

]
= Dn ⊗ I2, (11)

and

Dn = diag(d1, d2, . . . , dn). (12)

We now establish a connection between the symplectic eigenvalues of a positive definite matrix M
and the eigenvalues of the matrix iΩM . Consider the following chain of equalities:

iΩM = iΩSDST (13)

= iΩS(Dn ⊗ I2)ST (14)

= S−T (iΩ)(Dn ⊗ I2)ST (15)

= S−T (In ⊗ iΩ1)(Dn ⊗ I2)ST (16)

= S−T (Dn ⊗ iΩ1)ST (17)

= S−T (Dn ⊗−σY )ST (18)

= S−T (In ⊗ U2)︸ ︷︷ ︸
B

(Dn ⊗−σZ) (In ⊗ U †2)ST︸ ︷︷ ︸
B−1

. (19)

The first equality follows from (10). The second equality follows from (11). The third equality
follows from (9). The fourth equality follows from the definition of Ω as defined in (1). The last
two equalities follow from the fact that

iΩ1 = −σY = U2(−σZ)U †2 , (20)

where

U2 =
1√
2

[
1 1
i −i

]
. (21)

From (19) and from the fact that Dn ⊗ −σZ = diag(−d1, d1,−d2, d2, . . . ,−dn, dn), it follows that
the usual eigendecomposition of iΩM is given by B(Dn ⊗−σZ)B−1, where

B = S−T (In ⊗ U2) (22)

is the matrix of eigenvectors. We note that S−T can be expressed in terms of Ω and S. Since
SΩST = Ω, it follows that SΩSTΩT = ΩΩT . Since ΩΩT = I, S−1 = ΩSTΩT . Therefore, S−T =
ΩSΩT .
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Therefore, a method to find the symplectic eigenvalues of a positive definite matrix M is as follows.
We first find the usual eigendecomposition of the matrix iΩM , and the corresponding eigenvalues
provide the information of symplectic eigenvalues of the matrix M . Moreover, the symplectic matrix
S corresponding to the transformation M = SDST , can be found from the eigenvector matrix
B = S−T (In⊗U2) = ΩSΩT (In⊗U2) as defined in (22), i.e., S = B−T (In⊗UT2 ) = ΩTB(In⊗U †2)Ω.

3 Relationship between the Hamiltonian matrix and the covari-
ance matrix for a faithful Gaussian state

In this section, we derive the following relations between the Hamiltonian matrix and the covariance
matrix corresponding to a faithful Gaussian state:

σ = coth

(
iΩH

2

)
iΩ, (23)

H = 2 arccoth(iΩσ)iΩ . (24)

As discussed in the previous lecture, a positive definite matrix H can be represented in the following
symplectic diagonalized form:

H = ST
n⊕
j=1

λj

[
1 0
0 1

]
S , (25)

where λj > 0, ∀j ∈ {1, . . . , n}.

Moreover, the corresponding covariance matrix σ can be written as

σ = S−1
n⊕
j=1

coth

(
λj
2

)[
1 0
0 1

]
S−T , (26)

where νj ≡ coth(λj/2) for j ∈ {1, . . . , n} are the symplectic eigenvalues of σ.

From (19) and (25), it follows that

1

2
iΩH =

1

2
S−1(In ⊗ U2)(Dn ⊗−σZ)(In ⊗ U †2)S, (27)

where Dn = diag(λ1, λ2, . . . , λn).

Consider the following chain of equalities:

coth

(
iΩH

2

)
= S−1(In ⊗ U2) coth

(
Dn ⊗−σZ

2

)
(In ⊗ U †2)S (28)

= S−1(In ⊗ U2)
(

coth(Dn/2)⊗−σZ
)
(In ⊗ U †2)S (29)

= S−1(coth(Dn/2)⊗ iΩ1)S (30)

= S−1(coth(Dn/2)⊗ I2)(In ⊗ iΩ1)S (31)

= S−1(coth(Dn/2)⊗ I2)iΩS (32)

= S−1(coth(Dn/2)⊗ I2)S−T iΩ (33)

= σiΩ . (34)
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The first equality follows from (27). The second equality follows from the fact that coth(·) is an
odd function. The third equality follows from (20). The fifth equality follows from (1). The sixth
equality follows from (9). The last equality follows from (26).

Therefore, we get

coth

(
iΩH

2

)
iΩ = σ(iΩ)(iΩ) (35)

= σ. (36)

Similarly, the relation in (24) can be derived.

4 Uncertainty relation and symplectic eigenvalues of a covariance
matrix

Previously, we proved that the following uncertainty relation holds for any n-mode quantum state
that has a finite covariance matrix σ:

σ + iΩ ≥ 0 . (37)

We now discuss the restriction imposed by the uncertainty relation in (37) on the symplectic
eigenvalues of σ. Let S be the symplectic matrix diagonalizing σ as

SσST = D =

n⊕
j=1

dj

[
1 0
0 1

]
. (38)

We now prove that (37) implies dj ≥ 1,∀j. Consider the following chain of inequalities:

σ + iΩ ≥ 0 (39)

⇒ S(σ + iΩ)ST ≥ 0 (40)

⇒ SσST + iSΩST ≥ 0 (41)

⇒ D + iΩ ≥ 0 (42)

⇒
n⊕
j=1

dj

[
1 0
0 1

]
+ i

[
0 1
−1 0

]
≥ 0 (43)

⇒
n⊕
j=1

[
dj i
−i dj

]
≥ 0 (44)

⇒
[
dj i
−i dj

]
≥ 0,∀j. (45)

Since the eigenvalues of

[
dj i
−i dj

]
are dj + 1 and dj − 1, it follows from (45) that dj ≥ 1, ∀j.

Thus, any quantum covariance matrix σ (i.e., obeying (37)) has all of its symplectic eigenvalues
greater than or equal to one.
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5 Purification of a Gaussian state

In this section, we study Gaussian purifications of Gaussian states. We begin by determining the
mean vector and covariance matrix for a tensor product of two Gaussian states.

5.1 Tensor product of two Gaussian states

Let r̄A denote the mean vector and σA denote the covariance matrix of a Gaussian state ρA. Let
r̄B denote the mean vector and σB denote the covariance matrix of a Gaussian state ρB. Then the
mean vector of the tensor product state ρA ⊗ ρB is given by

r̄AB ≡
[
r̄A
r̄B

]
. (46)

Moreover, the covariance matrix of ρA ⊗ ρB is given by

σAB ≡ σA ⊕ σB =

[
σA 0
0 σB

]
. (47)

Similarly, if the mean vector of a Gaussian state is

[
r̄A
r̄B

]
and the covariance matrix is

[
σA 0
0 σB

]
,

then the Gaussian state is a tensor product of two Gaussian states.

5.2 Gaussian purifications of Gaussian states

A thermal state with mean number of photons n̄ ≥ 0 can be expressed in the photon-number basis
as follows.

θ(n̄) =
1

n̄+ 1

∞∑
n=0

(
n̄

n̄+ 1

)n
|n〉〈n| . (48)

Alternatively,

θ(λ) =
1

z(λ)

∞∑
n=0

exp(−λ(n+ 1/2))|n〉〈n|, (49)

where z(λ) = (eλ/2 − e−λ/2)−1 for λ > 0 (note that λ = ln(1 + 1/n̄)).

A purification of the thermal state θA(n̄) is given by the following two-mode squeezed vacuum
(TMS) state:

|ψTMS(n̄)〉AR =
1√
n̄+ 1

∞∑
n=0

√(
n̄

n̄+ 1

)n
|n〉A|n〉R, (50)

where R is a reference system.
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The covariance matrix of the two-mode squeezed vacuum state |ψTMS(n̄)〉AR is given by
2n̄+ 1 0 2

√
n̄(n̄+ 1) 0

0 2n̄+ 1 0 −2
√
n̄(n̄+ 1)

2
√
n̄(n̄+ 1) 0 2n̄+ 1 0

0 −2
√
n̄(n̄+ 1) 0 2n̄+ 1

 , (51)

which can be written in the following compact form:[
(2n̄+ 1)I 2

√
n̄(n̄+ 1)σZ

2
√
n̄(n̄+ 1)σZ (2n̄+ 1)I

]
. (52)

By the Williamson theorem, any n-mode Gaussian state ρ can be written as

ρ = D̂−r̄Ŝ

 n⊗
j=1

θAj (n̄j)

 Ŝ†D̂r̄, (53)

where Ŝ is a unitary generated by a quadratic Hamiltonian. Then a Gaussian purification of ρ is
given by [

D̂−r̄Ŝ
]
An

n⊗
j=1

|ψTMS(n̄j)〉AjRj . (54)

The mean vector of this purification is

[
r̄
0

]
. Moreover, the covariance matrix of this purification is

[
σ S

⊕n
j=1 2

√
n̄j(n̄j + 1)σZ(⊕n

j=1 2
√
n̄j(n̄j + 1)σZ

)
ST

⊕n
j=1(2n̄j + 1)I2

]
. (55)

One can arrive at this conclusion from the fact that

σ = S

 n⊕
j=1

(2n̄j + 1)I2

ST (56)

and the covariance matrix for
⊗n

j=1 |ψTMS(n̄j)〉AjRj is[ ⊕n
j=1(2n̄j + 1)I2

⊕n
j=1 2

√
n̄j(n̄j + 1)σZ⊕n

j=1 2
√
n̄j(n̄j + 1)σZ

⊕n
j=1(2n̄j + 1)I2

]
. (57)

We note that the symplectic matrix for the unitary evolution ŜAn ⊗ IRn is given by[
S 0
0 I

]
. (58)
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6 Purity of a quantum state

The purity of a quantum state ρ is defined as Tr{ρ2}. We now show that Tr{ρ2} ≤ 1. Consider
the following spectral decomposition of the state ρ:

ρ =
∑
x

λx|φx〉〈φx|. (59)

Then

Tr{ρ2} =
∑
x

λ2
x . (60)

Since λx ≤ 1 ⇒ λ2
x ≤ 1 and since

∑
x λx = 1 ⇒

∑
x λ

2
x ≤ 1. Therefore, if a state is pure, then

Tr{ρ2} = 1.

We now show that if Tr{ρ2} = 1, then the state is pure. Consider that

1 = Tr{ρ2} (61)

=
∑
x

λ2
x . (62)

Moreover, Tr{ρ} =
∑

x λx = 1⇒ Tr{ρ}2 =
∑

x,y λxλy = 1.

Consider the following chain of inequalities:

⇒ 0 = Tr{ρ2} − Tr{ρ}2 (63)

=
∑
x

λ2
x −

[∑
x,y

λxλy

]
(64)

=
∑
x

λ2
x −

[∑
x

λ2
x +

∑
x 6=y

λxλy

]
(65)

=
∑
x6=y

λxλy . (66)

Since λx, λy ≥ 0, the only possibility to satisfy (66) is that λx = 1 and λy = 0, ∀y 6= x. Thus,
Tr{ρ2} = 1 implies that ρ is a pure state.

6.1 Purity of a Gaussian state

In this section, we calculate the purity for Gaussian states. From the Williamson decomposition of
an n-mode Gaussian state as defined in (53) and from the fact that the purity is invariant under
unitary transformations, we get

Tr{ρ2} =
n∏
j=1

Tr{θ2(n̄j)} . (67)
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Consider the following chain of equalities:

Tr{θ2(n̄j)} =
1

(n̄j + 1)2

∞∑
n=0

(
n̄j

n̄j + 1

)2n

(68)

=
1

(n̄j + 1)2

1

1−
(
n̄j/(n̄j + 1)

)2 (69)

=
1

(n̄j + 1)2 − n̄2
j

(70)

=
1

2n̄j + 1
(71)

=
1

νj
, (72)

where νj denotes the symplectic eigenvalue of θ(n̄j). The first equality follows from the definition of
a thermal state as defined in (48). The second equality follows from the sum of an infinite geometric
series.

Therefore,

Tr{ρ2} =
n∏
j=1

1

νj
(73)

=

√√√√ n∏
j=1

1

ν2
j

(74)

=
1√∏n
j=1 ν

2
j

(75)

=
1

Det(σ)
. (76)

The last equality follows from (26) and from the fact that for any symplectic matrix S, Det(S) = 1.

Therefore, the purity of a Gaussian state is

Tr{ρ2} =
1√

Det(σ)
, (77)

which implies that a Gaussian state is pure if and only if Det(σ) = 1. Since νj ≥ 1, an equivalent
condition for the purity of a Gaussian state is that all symplectic eigenvalues are equal to one.

7 Entropy of a Gaussian state

In this section, we find an expression for the von Neumann entropy of a Gaussian state.

The von Neumann entropy of a quantum state ρ is defined as

S(ρ) ≡ −Tr{ρ ln ρ} . (78)
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We begin by expressing a thermal state with the mean photon number n̄ in the following form:

θ(n̄) =
1

n̄+ 1

∞∑
n=0

(
n̄

n̄+ 1

)n
|n〉〈n| (79)

=
1

n̄+ 1

(
n̄

n̄+ 1

)n̂
. (80)

Consider the following chain of equalities:

−Tr{θ(n̄) ln θ(n̄)} = −Tr

{
θ(n̄) ln

1

n̄+ 1

(
n̄

n̄+ 1

)n̂}
(81)

= −Tr

{
θ(n̄) ln

(
1

n̄+ 1

)}
− Tr

{
θ(n̄)n̂ ln

(
n̄

n̄+ 1

)}
(82)

= ln(n̄+ 1)− ln

(
n̄

n̄+ 1

)
Tr{θ(n̄)n̂} (83)

= ln(n̄+ 1)− ln

(
n̄

n̄+ 1

)
n̄ (84)

= (n̄+ 1) ln(n̄+ 1)− n̄ ln n̄ (85)

≡ g(n̄) . (86)

From unitary invariance and additivity of the von Neumann entropy, we get

S(ρ) = S

 n⊗
j=1

θ(n̄j)

 , (87)

where ρ is an n-mode Gaussian state as defined in (53). Therefore,

S(ρ) =
n∑
j=1

S(θ(n̄j)) (88)

=

n∑
j=1

g(n̄j) (89)

We now derive an alternative formula for the von Neumann entropy of faithful Gaussian states.
Let

ρ =
1√

Det[(σ + iΩ)/2)]
exp

(
−1

2
(r̂ − r̄)TH(r̂ − r̄)

)
(90)

= D̂−r̄

[
exp

(
−1

2 r̂
THr̂

)√
Det[(σ + iΩ)/2)]

]
D̂r̄ (91)

and let

ρ0 =
exp

(
−1

2 r̂
THr̂

)√
Det[(σ + iΩ)/2)]

. (92)
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Then from unitary invariance of the von Neumann entropy, we get

S(ρ) = S(ρ0) (93)

= −Tr{ρ0 ln ρ0} (94)

= −Tr{ρ0 ln
exp(−1

2 r̂
THr̂)√

Det[(σ + iΩ)/2]
} (95)

= −Tr{ρ0 ln
1√

Det[(σ + iΩ)/2]
} − Tr{ρ0 ln exp(−1

2
r̂THr̂)} (96)

=
1

2
ln Det[(σ + iΩ)/2] +

1

2
Tr{ρ0r̂

THr̂} . (97)

We now focus on the second term of the aforementioned equation.

Tr{ρ0r̂
THr̂} = Tr{ρ0

∑
j,k

r̂jHj,kr̂k} (98)

=
∑
j,k

Hj,k Tr{ρ0r̂j r̂k} (99)

=
1

2

∑
j,k

Hj,k Tr{ρ0({r̂j , r̂k}+ [r̂j , r̂k])} (100)

=
1

2

∑
j,k

Hj,k(σj,k + iΩj,k) (101)

=
1

2

∑
j,k

Hj,kσj,k −
i

2

∑
j,k

Hj,kΩk,j (102)

=
1

2
Tr{Hσ} − i

2
Tr{HΩ} (103)

=
1

2
Tr{Hσ}, (104)

where we used the fact that Tr{HΩ} = 0, which holds because H is symmetric and Ω is antisym-
metric.

Therefore,

S(ρ) =
1

2
ln Det[(σ + iΩ)/2] +

1

4
Tr{Hσ} . (105)

Moreover, from (24) it follows that

S(ρ) =
1

2
ln Det[(σ + iΩ)/2] +

1

2
Tr{arccoth(iΩσ)iΩσ} . (106)

This latter expression is valid for pure Gaussian states, with the expression Tr{arccoth(iΩσ)iΩσ}
understood in a limiting sense.

References

[Ser17] Alessio Serafini. Quantum Continuous Variables: A Primer of Theoretical Methods. CRC
Press, 2017.

10


	Overview
	Symplectic eigenvalues of a positive definite matrix
	Relationship between the Hamiltonian matrix and the covariance matrix for a faithful Gaussian state
	Uncertainty relation and symplectic eigenvalues of a covariance matrix
	Purification of a Gaussian state
	Tensor product of two Gaussian states
	Gaussian purifications of Gaussian states

	Purity of a quantum state
	Purity of a Gaussian state

	Entropy of a Gaussian state

