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1 Overview

In the previous lecture, we studied transformations of quantum states under evolutions induced by
both linear and quadratic Hamiltonians.

In this lecture, we will continue on the same track and proceed to define faithful Gaussian states.
Further, we will discuss the most general form that a Gaussian state can take.

2 Quadratic Hamiltonians

2.1 Faithful quantum states

Consider a Hamiltonian of the form

Ĥ =
1

2
r̂THr̂ + r̂T r′ (1)

where r′ ∈ R2n and H is a positive definite 2n× 2n real matrix. A faithful n-mode Gaussian state
is defined as follows:

e−βĤ

Tr
[
e−βĤ

] for β > 0. (2)

The word faithful means that the state is positive definite, which also means that it has full support.

Consider that

Ĥ ′ ≡ 1

2
(r̂ − r)TH(r̂ − r) (3)

=
1

2

(
r̂THr̂ − 2rTHr̂ + ‖r‖22

)
(4)

=
1

2
r̂THr̂ − r̂THr +

1

2
‖r‖22. (5)

Now if we set r = −H−1r, we recover the original form of the Hamiltonian in (1) up to an additive
constant. That constant term ‖r‖22 can be eliminated after normalization. Furthermore, β can be
subsumed into H.

Thus, we take our formal definition of faithful Gaussian states to be as follows:
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Definition 1. A faithful n-mode Gaussian state is defined as follows:

exp
(
−1

2(r̂ − r)TH(r̂ − r)
)

Tr
[
exp

(
−1

2(r̂ − r)TH(r̂ − r)
)] . (6)

where r ∈ R2n and H is a positive definite 2n× 2n real matrix.

It is natural at this point to consider computing the mean vector, covariance matrix, and normal-
ization for a faithful Gaussian state parameterized by r and H.

2.2 Simple example of a single-mode state

We will start with perhaps the most simple example possible. Consider a single-mode state with
Hamiltonian matrix

H = λ

(
1 0
0 1

)
, (7)

λ > 0, and r = 0.

Then the state is given by

ρ =
e−

1
2
r̂THr̂

Tr
[
e−

1
2
r̂THr̂

] . (8)

Consider that

1

2
r̂THr̂ =

1

2

(
x̂ p̂

)(λ 0
0 λ

)(
x̂
p̂

)
(9)

=
λ

2
(x̂2 + p̂2). (10)

If we now use

n̂ = â†â =

(
x̂− ip̂√

2

)(
x̂+ ip̂√

2

)
(11)

=
1

2

(
x̂2 + p̂2 + i[x̂, p̂]

)
(12)

=
1

2

(
x̂2 + p̂2 − 1

)
, (13)

then
1

2
r̂THr̂ = λ(n̂+ 1/2). (14)
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We can use the fact that n̂ =
∑∞

n=0 n|n〉〈n| to write

e−
1
2
r̂THr̂ =

∞∑
n=0

e−λ(n+ 1
2

)|n〉〈n| (15)

= e−
λ
2

∞∑
n=0

e−λn|n〉〈n| (16)

=⇒ Tr
[
e−

1
2
r̂THr̂

]
= e−

λ
2

∞∑
n=0

e−λn (17)

= e−
λ
2

1

1− e−λ
(18)

=
1

e
λ
2 − e−

λ
2

(19)

≡ z(λ). (20)

We denote the final quantity as z(λ) due to its role as the partition function from statistical
mechanics.

2.2.1 Mean vector

We now prove that any state diagonal in the Fock basis has mean vector equal to zero. This follows
because

〈n|x̂|n〉 =
1√
2
〈n|â+ â†|n〉 (21)

=
1√
2

[
〈n|â|n〉+ 〈n|â†|n〉

]
(22)

=
1√
2

[√
n 〈n|n− 1〉+

√
n+ 1 〈n|n+ 1〉

]
(23)

= 0. (24)

By a similar calculation, 〈n|p̂|n〉 = 0.

Therefore any state that is diagonal in the Fock (number state) basis has mean vector equal to zero
and we can write

Tr
[
e−

1
2
r̂THr̂x̂

]
= 0 = Tr

[
e−

1
2
r̂THr̂p̂

]
. (25)

2.2.2 Covariance matrix

It is simple to show that 〈n|x̂p̂+ p̂x̂|n〉 = 0 and also that

〈n|2x̂2|n〉 = 2n+ 1 = 〈n|2p̂2|n〉 . (26)
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It follows from

x̂p̂+ p̂x̂ =
1

2i

[(
â+ â†

)(
â− â†

)
+
(
â− â†

)(
â+ â†

)]
(27)

=
1

2i

[
â2 + â†â− ââ† −

(
â†
)2

+ â2 − â†â+ ââ† −
(
â†
)2
]

(28)

=
1

i

[
â2 −

(
â†
)2
]
. (29)

Then we find that

〈n| [x̂p̂+ p̂x̂] |n〉 =
1

i
〈n|
[
â2 −

(
â†
)2
]
|n〉 (30)

=
1

i
〈n|â2|n〉 − 〈n|

(
â†
)2
|n〉 (31)

=
1

i

√
n (n− 1)〈n|n− 2〉 −

√
(n+ 1) (n+ 2)〈n|n+ 2〉 (32)

= 0. (33)

Also, we find that

〈n|2x̂2|n〉 = 2〈n|
(
â+ â†√

2

)2

|n〉 (34)

= 〈n|â2 + â†â+ ââ† +
(
â†
)2
|n〉 (35)

= 〈n|â2 + 2â†â+ I +
(
â†
)2
|n〉 (36)

= 2n+ 1, (37)

and similarly,

〈n|2p̂2|n〉 = 2〈n|
(
â− â†√

2i

)2

|n〉 (38)

= −〈n|â2 − â†â− ââ† +
(
â†
)2
|n〉 (39)

= 〈n| − â2 + 2â†â+ I −
(
â†
)2
|n〉 (40)

= 2n+ 1. (41)

This means that

Tr

[
{x̂, p̂}e

− 1
2
r̂THr̂

z(λ)

]
= 0 (42)
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and

2Tr

[
x̂2 e

− 1
2
r̂THr̂

z(λ)

]
=

1

z(λ)
Tr

[
2x̂2

∞∑
n=0

e−λ(n+ 1
2

)|n〉〈n|

]
(43)

=
1

z(λ)

∞∑
n=0

e−λ(n+ 1
2

)2Tr
[
x̂2|n〉〈n|

]
(44)

=
1

z(λ)

∞∑
n=0

e−λ(n+ 1
2

)(2n+ 1) (45)

= 1 + 2
e−

λ
2

z(λ)

∞∑
n=0

e−λnn (46)

= 1 + 2
e−

λ
2

z(λ)

[
− d

dλ

( ∞∑
n=0

e−λn

)]
(47)

= 1 + 2
e−

λ
2

z(λ)

[
− d

dλ

(
1

1− e−λ

)]
(48)

= 1 + 2
(

1− e−λ
)[ e−λ

(1− e−λ)2

]
(49)

= coth

(
λ

2

)
(50)

≡ ν(λ) > 1 for λ > 0 (51)

where cothx = ex+e−x

ex−e−x .

Similarly, we have

2Tr

[
p̂2 e
− 1

2
r̂THr̂

z(λ)

]
= coth

(
λ

2

)
. (52)

So we have seen that a single-mode state with Hamiltonian matrix H =

(
λ 0
0 λ

)
for λ > 0 has

mean vector equal to zero, and covariance matrix σ given by

σ =

(
ν(λ) 0

0 ν(λ)

)
, (53)

where ν(λ) = coth
(
λ
2

)
.

2.2.3 Normalization

The normalization of this state is

Tr
[
e−

1
2
r̂THr̂

]
= z(λ) =

1

e
λ
2 − e−

λ
2

. (54)
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If, instead, we had started by specifying covariance matrix as σ =

(
ν 0
0 ν

)
such that(

ν 0
0 ν

)
+ i

(
0 1
−1 0

)
> 0 (55)

then the Hamiltonian matrix elements are given by the inverse operation

λ(ν) = 2arcoth(ν) (56)

where arcoth(x) = 1
2 ln

(
x+1
x−1

)
when |x| > 1.

Then the normalization function can be written as

z(λ(ν)) =
1

2

√
ν2 − 1 (57)

=
1

2

√
Det

([
ν i
−i ν

])
(58)

=
1

2

√
Det (σ + iΩ) (59)

=

√
Det

(
σ + iΩ

2

)
. (60)

We see that for the form of covariance matrix chosen, the normalization Tr
[
e−

1
2
r̂THr̂

]
can be written

in terms of it.

2.3 n-mode state with diagonal Hamiltonian matrix

Consider an n-mode state with a diagonal Hamiltonian matrix

H =



λ1

λ1

λ2

λ2 0
. . .

0 λn
λn


=

n⊕
j=1

λj

[
1 0
0 1

]
(61)

with λj > 0 ∀j.

Then the Hamiltonian operator is

Ĥ =
1

2
r̂THr̂ =

1

2

∑
j=1

nλj(x̂
2
j + p̂2

j ) (62)

so that

e−
1
2
r̂THr̂ = e−

1
2

∑n
j=1 λj(x̂

2
j+p̂

2
j ) (63)

=

n⊗
j=1

e−
λj
2

(x̂2j+p̂
2
j ) (64)
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We can apply our arguments from the previous calculation (specifically (21) and (26)) to conclude
that the mean vector of this state is zero.

2.3.1 Covariance matrix

The covariance matrix is a diagonal matrix given as

σ =
n⊕
j=1

ν(λj)

[
1 0
0 1

]
(65)

where as in the previous, ν(λj) = coth
(
λj
2

)
> 1.

If the covariance matrix elements are given as in (65), then the Hamiltonian isH =
⊕n

j=1 λ(νj)

[
1 0
0 1

]
for λ(ν) = 2arcoth(ν) > 0.

2.3.2 Normalization

The normalization is given by

Tr

 n⊗
j=1

e−
λj
2

(x̂2j+p̂
2
j )

 =

n∏
j=1

Tr

[
e−

λj
2

(x̂2j+p̂
2
j )

]
(66)

=
n∏
j=1

z(λj) (67)

=

n∏
j=1

1

2

√
ν2
j − 1 (68)

=

n∏
j=1

√
Det

(
σj + iΩ1

2

)
(69)

=

√√√√ n∏
j=1

Det

(
σj + iΩ1

2

)
(70)

=

√
Det

(
σ + iΩ

2

)
. (71)

This sequence of steps utilizes the fact that σ+ iΩ =
⊕n

j=1 σj + iΩ1 where σj = νj

[
1 0
0 1

]
. We also

used the fact that Det(A⊕B) = Det(A)Det(B).

To summarize, for multimode states with Hamiltonian matrix H =
⊕n

j=1 λj

[
1 0
0 1

]
, the state given

by
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e−
1
2
r̂THr̂

Tr
[
e−

1
2
r̂THr̂

]
has mean vector equal to zero, covariance matrix

σ =

n⊕
j=1

ν(λj)

[
1 0
0 1

]
(72)

with ν(λj) = coth
(
λj
2

)
and normalization

n∏
j=1

z(λj) =

√
Det

(
σ + iΩ

2

)
. (73)

3 Towards a general Gaussian state

In this section, we work towards establishing the most general form that a Gaussian state can take.
We begin with a quadratic Hamiltonian, act upon it by congruence with a symplectic matrix S,
and lastly we displace the state to obtain the most general form.

Suppose now that we take such a diagonal Hamiltonian H and act on it by congruence with a
symplectic matrix S to produce a new Hamiltonian matrix H ′.

H ′ = STHS (74)

where S = eΩA for symmetric and real A. Consider now the state

ρ =
e−

1
2
r̂TH′r̂

Tr
[
e−

1
2
r̂TH′r̂

] =
e−

1
2
r̂TSTHSr̂

Tr
[
e−

1
2
r̂TSTHSr̂

] (75)

3.1 Mean Vector

In the following, we will show how the mean vector of ρ as defined in (75) is equal to zero.

We have

Sr̂ = eΩAr̂ = e
i
2
r̂TAr̂r̂e−

i
2
r̂TAr̂ (76)

(77)

and

S−1r̂ = e−ΩAr̂ = e
i
2
r̂T (−A)r̂r̂e−

i
2
r̂T (−A)r̂ (78)

= e−
i
2
r̂TAr̂r̂e

i
2
r̂TAr̂. (79)
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=⇒ 1

2
r̂TSTHSr̂ =

1

2
(Sr̂)THSr̂ (80)

=
1

2

(
e
i
2
r̂TAr̂r̂e−

i
2
r̂TAr̂

)T
H
(
e
i
2
r̂TAr̂r̂e−

i
2
r̂TAr̂

)
(81)

= e
i
2
r̂TAr̂ 1

2
r̂THr̂e−

i
2
r̂TAr̂ (82)

=⇒ e−
1
2
r̂TSTHSr̂ = e

i
2
r̂TAr̂e−

1
2
r̂THr̂e−

i
2
r̂TAr̂ (83)

(84)

=⇒ mean vector of e−
1
2 r̂
T STHSr̂

Tr
[
e−

1
2 r̂
T STHSr̂

]

= Tr

[
r̂e

i
2
r̂TAr̂e−

1
2
r̂THr̂e−

i
2
r̂TAr̂

Tr
[
e−

1
2
r̂THr̂

] ]
(85)

= Tr

[
e−

i
2
r̂TAr̂r̂e

i
2
r̂TAr̂ e−

1
2
r̂THr̂

Tr
[
e−

1
2
r̂THr̂

]] (86)

= Tr

[
S−1r̂

e−
1
2
r̂THr̂

Tr
[
e−

1
2
r̂THr̂

]] (87)

= S−1.0 = 0. (88)

In the above, the second equality arises due to cyclicity of the trace. The third equality follows
from (79). S−1 can then be pulled out of the trace operation and the final equality follows from
the earlier performed calculations in 2.2.1.

3.2 Covariance Matrix

Since the mean vector is zero, the covariance matrix is given by

σ = Tr

[
{r̂, r̂T }e

i
2
r̂TAr̂ e−

1
2
r̂THr̂

Tr
[
e−

1
2
r̂THr̂

]e− i
2
r̂TAr̂

]
(89)

= Tr

[
e−

i
2
r̂TAr̂{r̂, r̂T }e

i
2
r̂TAr̂ e−

1
2
r̂THr̂

Tr
[
e−

1
2
r̂THr̂

]] (90)

= Tr

[{
S−1r̂, (S−1r̂)T

} e−
1
2
r̂THr̂

Tr
[
e−

1
2
r̂THr̂

]}] (91)

= S−1Tr

[
{r̂, r̂T } e−

1
2
r̂THr̂

Tr
[
e−

1
2
r̂THr̂

]]S−T (92)

= S−1σS−T (93)

≡ σ′. (94)

=⇒ σ′ = S−1

 n⊕
j=1

coth

(
λj
2

)[
1 0
0 1

]S−T . (95)
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In the above, the first equality arises from the definition of the covariance matrix. The second
equality results from the cyclicity of trace. The third equality arises from applying (79). The
fourth equality comes from recognizing that S−1 and S−T can be taken out of the trace. Finally
one can recognize the original covariance matrix and obtain the expression for σ′.

3.3 Normalization

Tr
[
e−

1
2
r̂TH′r̂

]
= Tr

[
e
i
2
r̂TAr̂e−

1
2
r̂THr̂e−

i
2
r̂TAr̂

]
(96)

= Tr
[
e−

1
2
r̂THr̂

]
(97)

=

√
Det

(
σ + iΩ

2

)
. (98)

In the above, we used the cyclicity of trace to make the simplification.

For symplectic S, we have the following properties (proved in section 4).

Det(S) = 1 = Det(S−1) (99)

= Det(S−T ). (100)

Thus we can write √
Det

(
σ + iΩ

2

)
=

√
Det(S−1)Det

(
σ + iΩ

2

)
Det(S−T ) (101)

=

√
Det

(
S−1

(
σ + iΩ

2

)
S−T

)
(102)

=

√
Det

(
σ′ + iΩ

2

)
(103)

where we used that SΩST = Ω.

3.4 Displacing the state

Now suppose that we act on the new state characterized in the above by a displacement operator
D̂r = exp(irTΩr̂).

D̂−re
− 1

2
r̂TH′r̂D̂r = e−

1
2

[
D̂−r r̂

TH′r̂D̂r
]

(104)

If we write
r̂TH ′r̂ =

∑
jk

r̂jH
′
jkr̂k (105)
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then we can see that

D̂−rr̂
TH ′r̂D̂r =

∑
jk

D̂−rr̂jD̂rH
′
jkD̂−rr̂kD̂r (106)

=
∑
jk

(r̂j − rj)H ′jk (r̂j − rj) (107)

which yields

D̂−re
− 1

2
r̂TH′r̂D̂r = e−

1
2

[
D̂−r r̂

TH′r̂D̂r
]

(108)

= e−
1
2

(r̂−r)TH′(r̂−r). (109)

This implies that under this change of the new state (via a displacement operator), the mean vector
translates from zero to r.

The covariance matrix, on the other hand, remains unchanged because it is invariant to changes
in the mean vector alone. By this observation, it also follows that the normalization of the state is
unchanged.

This faithful Gaussian state can be written as

e−
1
2

(r̂−r)TH′(r̂−r)√
Det

(
σ′+iΩ

2

) (110)

where

H ′ = ST
n⊕
j=1

λj

[
1 0
0 1

]
S (111)

and

σ′ = S−1
n⊕
j=1

coth

(
λj
2

)[
1 0
0 1

]
S−T . (112)

Notice the similarity of (110) to the expression for a classical multimode Gaussian density function.

The form of the faithful Gaussian state stated above is actually the most general form that a
faithful Gaussian quantum state can take.

By everything that we have done in the preceding pages, we can write

e−
1
2

(r̂−r)TH′(r̂−r)√
Det

(
σ′+iΩ

2

) =
D̂−rŜAe

− 1
2
r̂THr̂Ŝ†AD̂r

Tr
[
e−

1
2
r̂THr̂

] (113)

where

H =

n⊕
j=1

λj

[
1 0
0 1

]
(114)

with λj > 0,

ŜA = e
i
2
r̂TAr̂ (115)
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and

Tr
[
e−

1
2
r̂THr̂

]
=

√
Det

(
σ + iΩ

2

)
(116)

=

√
Det

(
σ′ + iΩ

2

)
(117)

with σ =
⊕n

j=1 ν(λj)

[
1 0
0 1

]
where ν(λ) = coth

(
λ
2

)
.

4 Determinant of a symplectic matrix

In the following we prove that the determinant of a symplectic matrix is equal to one.

Lemma 2. Any symplectic matrix has determinant equal to one.

Proof. Consider that S is a symplectic matrix. We then have SΩST = Ω. Beginning with that and
taking determinant on both sides, we have the following:

=⇒ Det(SΩST ) = Det(Ω) (118)

=⇒ Det(S)Det(Ω)Det(ST ) = Det(Ω) = 1 (119)

=⇒ Det(S)Det(ST ) = 1 (120)

=⇒ Det(S)2 = 1 (121)

=⇒ Det(S) = ±1. (122)

The second line follows from the fact that Det(Ω) = 1. The fourth line is due to the invariance of
the determinant to transposition of its argument.

Now that we have established that Det(S) = ±1, we need to eliminate the possibility that Det(S) =
−1 to conclude the proof.

Using the fact that any symplectic matrix is invertible (and thus full-rank), it follows that STS is
a symmetric positive definite matrix. This implies that the eigenvalues of STS+ I are greater than
one.

Thus

STS + I = ST (S + S−T ) (123)

= ST (S + ΩSΩT ) (124)

which is due to

SΩST = Ω (125)

=⇒ SΩSTΩT = ΩΩT = I (126)

=⇒ S−1 = ΩSTΩT (127)

=⇒ S−T = ΩSΩT . (128)
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Consider that Ω =
⊕n

j=1 Ω1 = I⊗ Ω1. Then, if we write S as follows,

S =
∑

j,k∈{0,1}

Sjk ⊗ |j〉〈k| (129)

we get

S + ΩSΩT =
∑
jk

Sjk ⊗ |j〉〈k|+ (I⊗ Ω1) (Sjk ⊗ |j〉〈k|)
(
In ⊗ ΩT

1

)
(130)

=
∑
jk

Sjk ⊗
[
|j〉〈k|+ Ω1 |j〉〈k|ΩT

1

]
. (131)

Using Ω1 |0〉 = − |1〉 and Ω1 |1〉 = |0〉,

|j〉〈k|+ Ω1 |j〉〈k|ΩT
1 = |j〉〈k|+ (−1)j+1(−1)k+1 |j ⊕ 1〉〈k ⊕ 1| (132)

= |j〉〈k|+ (−1)j+k |j ⊕ 1〉〈k ⊕ 1| (133)

=⇒ S + ΩSΩT =
∑
jk

Sjk ⊗
[
|j〉〈k|+ Ω1 |j〉〈k|ΩT

1

]
(134)

= (S00 + S11)⊗ |0〉〈0|+ (S01 − S10)⊗ |0〉〈1| (135)

+ (−S01 + S10)⊗ |1〉〈0|+ (S00 + S11)⊗ |1〉〈1| . (136)

Define real matrices C and D as follows:

C = S00 + S11 (137)

D = S01 − S10. (138)

=⇒ S + ΩSΩT = C ⊗ |0〉〈0|+D ⊗ |0〉〈1| −D ⊗ |1〉〈0|+ C ⊗ |1〉〈1| (139)

= (I⊗ u) ([C + iD]⊗ |0〉〈0|+ [C − iD]⊗ |1〉〈1|) (I⊗ u†) (140)

where u = 1√
2

[
1 1
i −i

]
.

We then get

0 < 1 < Det(STS + I) (141)

= Det
(
ST (S + ΩSΩT )

)
(142)

= Det(ST )Det(S + ΩSΩT ) (143)

= Det(S)Det(I⊗ u)Det(C + iD)Det(C − iD)Det(I⊗ u†) (144)

= Det(S)Det(C + iD)Det(C + iD) (145)

= Det(S)Det(C + iD)Det(C + iD) (146)

= Det(S)|Det(C + iD)|2. (147)

13



Since Det(S)|Det(C + iD)|2 > 0, it must be the case that Det(S) > 0.

Thus we can conclude that Det(S) 6= −1 and hence the only remaining possibility, by necessity, is
that Det(S) = 1.
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