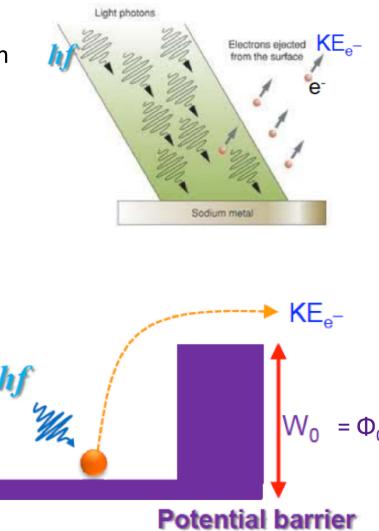
CHAPTER 14: FLUIDS

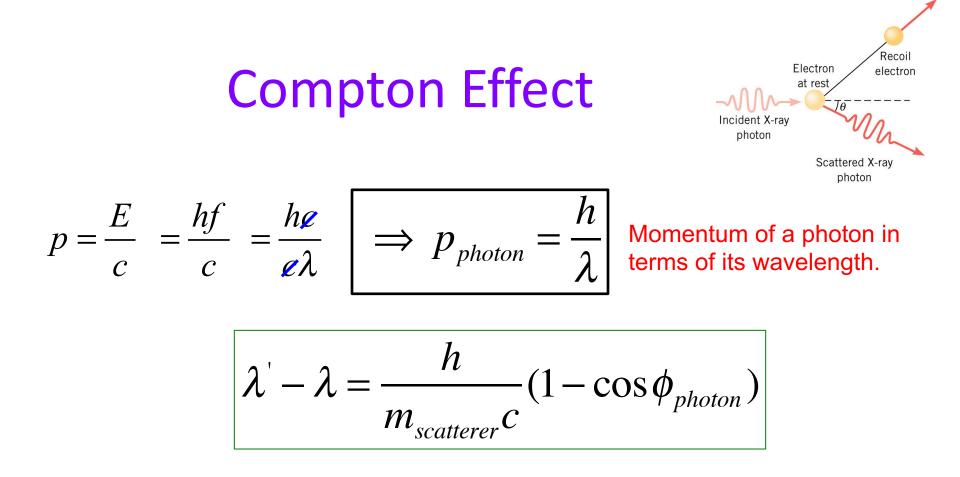
1) What is a "fluid" liquid OR gas (incompressible vs compressible) \rightarrow continually deforms (flows) under shearing stress $p = \frac{F}{\Delta}$ 2) Pressure <u>Units</u> pascal = $Pa = N/m^2 = kg/(m \cdot s^2)$ $\rho = \frac{m}{V}$ 3) Density Note: density solid > liquid > gas ["rho"] $\Delta p_{gauge} = \rho g h$ $p_{at h} = p_{atm} + \rho g h$ 4) Fluids at rest Pressure applied to a confined fluid **increases** 5) Pascal's Principle: the pressure throughout by same amount buoyant force on partially or fully submerged object 6) Archimedes Principle: is directed upward and has magnitude equal to weight of fluid displaced $F_{R} = m_{Fluid \ diplaced} g$ 7) Equation of continuity: $R_m = \rho R_v = \rho A v = \text{constant}$ $R_{v} = Av = \text{constant}$

8) Bernoulli's Equation: $p_a + \frac{1}{2}\rho v_a^2 + \rho g y_a = p_b + \frac{1}{2}\rho v_b^2 + \rho g y_b = \text{constant}$

Photoelectric Effect

Einstein's Theory:

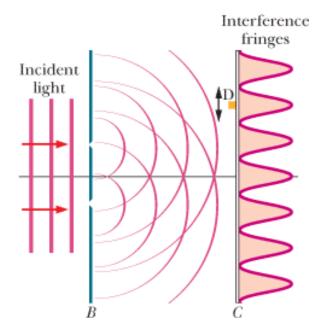

- Light consists of photons with energy *E* = *hf*
- One electron can discretely absorb one photon
- An electron uses the photon's energy to overcome the potential energy barrier


Energy Conservation:

$$hf - \Phi = KE_{\max}$$

Whether electrons get out depends on frequency NOT intensity of light!!!

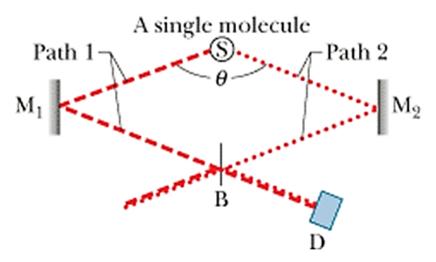
Simple picture view:



- In words, this equation states that the difference in the wavelengths between the scattered photon and the incident photon is related to the scattering angle by the above relationship.
- Notice: cos φ can vary between -1 and +1, so the shift in the photon's wavelength will vary between 0 and 2h/mc.

Probability Waves Light as a Probability Wave

Double Slit Experiment for Light

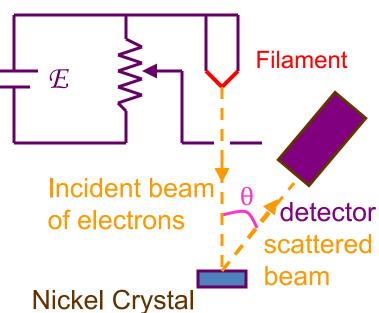


Single Photon Diffraction

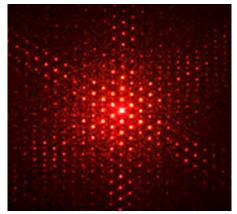
The same diffraction pattern emerges even if photons are sent through one at a time!!!

Which path does the photon follow?

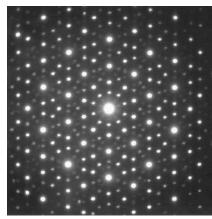
Wide-angle "DSE" for Light

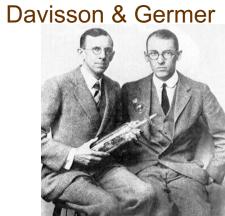

A single photon interferes with itself?!

Consistent Interpretation (Probabilistic)


- 1. Light is emitted as a **particle**.
- 2. Light is absorbed as a **particle**.
- 3. Light travels as a **probability wave**.

Matter Waves – de Broglie Wavelength


- 1927 Davisson and Germer at Bell Laboratories performed an experiment which confirmed de Broglie's idea.
 - Thomson in Scotland independently did a similar experiment also verifying this claim.
- Davison and Germer found that the electrons were diffracted from the nickel crystal just as X-rays were diffracted from a crystal (serendipity....)



Photon Diffraction

Electron Diffraction

λ

тv

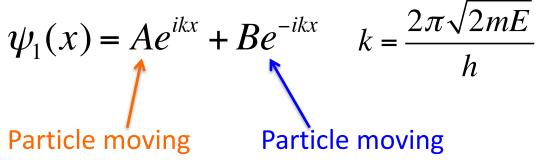
Schrodinger Equation

$$\frac{\partial^2 \psi(x)}{\partial x^2} + \frac{8\pi^2 m}{h^2} [E - U(x,t)] \psi(x) = 0$$

$$\boxed{\frac{\partial^2 \psi(x)}{\partial x^2} + k^2 \psi(x) = 0}$$

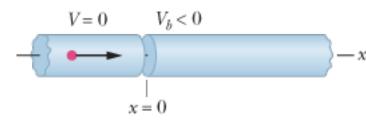
By comparing the two equations we have:

$$k = \sqrt{\frac{8\pi^2 m}{h^2} \left[E - U(x,t) \right]} = \frac{2\pi}{h} \sqrt{2m \left[E - U(x,t) \right]}$$

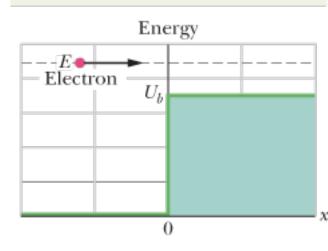

The solution to this Diff. Eq. is the probability wave:

$$\psi(x) = Ae^{ikx} + Be^{-ikx}$$

 $\operatorname{Prob}(x,t) = |\Psi|^2 = \Psi\Psi^* = \psi(x)\psi^*(x)e^{-i\omega t}e^{i\omega t} = \psi(x)\psi^*(x)$


Reflection

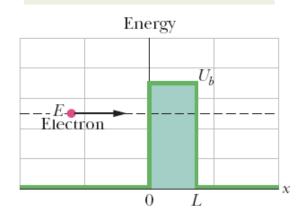
In region 1, the electron is free, so we have:



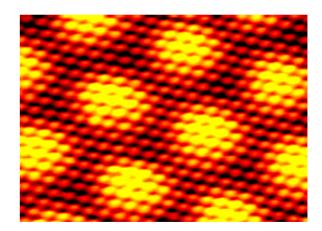
to the right to the right

Probability is just: $|\psi|^2$ Probability electron is incoming: $|A|^2$ Probability electron is reflected: $|B|^2$ Reflection coefficient: $R = \frac{|B|^2}{|A|^2}$ Can the electron be reflected by the region of negative potential?

Classically, the electron has too much energy to be reflected by the potential step.



Tunneling


Transmission coefficient:
$$T = 1 - R = 1 - \frac{|B|^2}{|A|^2}$$

This is true even when E < U!!!!

Classically, the electron lacks the energy to pass through the barrier region.

One atomic layer of Ag on Ni(111)

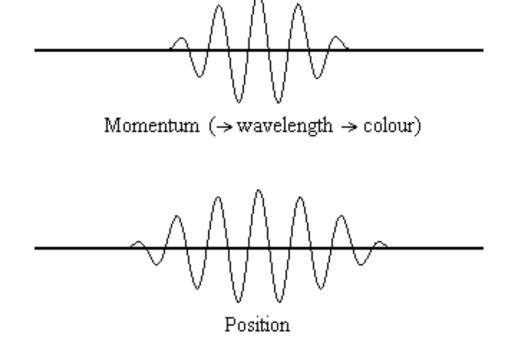
 $7x5 \text{ nm}^2$

Heisenberg's Uncertainty Principle: measured values cannot be assigned to the position and the momentum of a particle simultaneously with unlimited precision.

$$\Delta x \cdot \Delta p_x \ge \hbar$$

$$\Delta y \cdot \Delta p_y \ge \hbar$$
 (Heisenberg's uncertainty principle).

$$\Delta z \cdot \Delta p_z \ge \hbar$$


Here Δx and Δp_x represent the intrinsic uncertainties in the measurements of the x components of r and p, with parallel meanings for the y and z terms. Even with the best measuring instruments, each product of a position uncertainty and a momentum uncertainty will be greater than \hbar , never less.

 This expression includes a wave traveling to the right and one traveling to the left. To simplify take only the rightward solution (*B*=0) so that

Probability density $|\psi(x)|^2$

0

$$Prob(x) = \psi(x)\psi^{*}(x) = A^{2}e^{ikx}e^{-ikx} = A^{2}$$

