
PHYS 7895 Fall 2015
Introduction to Quantum Information Theory

Homework 1

Due Friday 27 January 2017, by 3pm in Nicholson 447
(Please try all the problems by yourself first. If you find that you struggle with them, you
are allowed to work with no more than one collaborator as long as you write down who your
collaborator is. No late assignments will be accepted. Please be sure to download the latest
version of the notes before starting the homework.)

This assignment has a first part and a second part.

First part: Exercises in http://www.markwilde.com/qit-notes.pdf :

2.1.1, 2.2.1

Second part: The following exercises:

1. Concentration inequalities:

(a) Prove the Markov inequality. That is, for a random variable X whose realizations
are non-negative, prove that

Pr{X ≥ ε} ≤ E{X}
ε

.

(b) Prove the Chebyshev inequality. That is, for any random variable with finite
second moment, show that the following inequality holds:

Pr{|X − E{X}| ≥ ε} ≤ Var{X}
ε2

,

where Var{X} = E
{
|X − E{X}|2

}
.

(c) Prove the following law of large numbers. For a large number of pairwise in-
dependent and identically distributed random variables X1, . . . , Xn, (such that
E{Xi} = µ and E

{
|Xi − µ|2

}
= σ2 for all i ∈ {1, . . . , n}) the probability that the

sample mean deviates from the true mean has a power law decay:

Pr

{∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ ε

}
≤ σ2

ε2n
.

(d) Prove the first part of the Chernoff-Hoeffding bound. That is, for a large number
of bounded independent and identically distributed random variables X1, . . . , Xn,
show that the probability that the sample mean deviates from the true mean by
an additive constant (one-sided) decays exponentially with the number of samples
taken:

Pr

{
1

n

n∑
i=1

Xi − µ ≥ ε

}
≤ inf

t>0

[EX{exp{tX}}]n

exp{t(µ+ ε)}n
.
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The idea to finish it off from here is to choose t small enough so that we have

[EX{exp{tX}}]/ exp{t(µ+ ε)} < 1

(implying an exponential decay with n). Bonus points for taking it from here to
get the exponential decay.

2. Before you were born, the mathematicians (probabilists) were hard at work, trying to
obtain ever finer characterizations of the convergence rate in the central limit theo-
rem. The initial best characterizations are due to Berry and Esseen, who proved the
following theorem. Let Z1, . . . , Zn be a sequence of i.i.d. random variables (assume
finite cardinality for simplicity and each with mean µ and variance σ2). Then the
deviation of the tail of the sample mean of the normalized Z1, . . . , Zn from the tail of
a normalized Gaussian falls off as the inverse square-root of the number of samples:∣∣∣∣Pr

{∑n
i=1[Zi − µ]√

nσ2
≥ δ1

}
−Q(δ1)

∣∣∣∣ ≤ Cξ

σ3
√
n
,

where ξ is the third central moment of each Zi, C is a fixed positive constant that
seems to keep improving, and Q(x) is the tail of a standard Gaussian:

Q(x) ≡ 1√
2π

∫ ∞
x

exp
{
−|u|2/2

}
du.

Let us define the set TXn
of “one-sided” variance-typical sequences for a distribution

pX(x) to be as follows:

TXn ≡

{
xn : − 1

n
log(pXn(xn))−H(X) ≤

√
V (X)

n
Q−1(ε)

}
,

where V (X) = VarX{− log pX(X)}, ε is a fixed positive constant, andQ−1 is the inverse
of the Q function. (The above definition differs from the one we defined in class just by
focusing on one side of the typicality tolerance and by choosing the typicality parameter
δ to decrease with n, i.e., δ =

√
V (X)/nQ−1(ε).)

(a) Find an upper bound on the size of the set TXn
.

(b) Using the Berry-Esseen theorem, find an upper bound on the probability that a
random sequence Xn falls outside the set TXn

.

(c) Put these two facts together and describe a data compression scheme (Shannon-
style). That is, for a specified error probability ε′ (and such that n is of the order
(1/ε′)2), to how many bits can this scheme allow for us to compress a random
length-n sequence?1

1The Berry-Esseen theorem has been put to great use recently in many problems in both classical and
quantum information theory to account for finite-size effects that get “washed away” in the limit of many
instances of a resource.
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