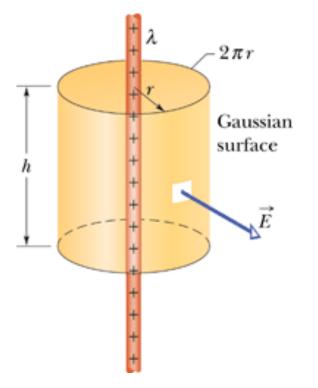
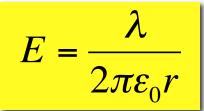
#9: Cylindrical and Planar

Imagine charge distributed evenly on a long, straight wire.

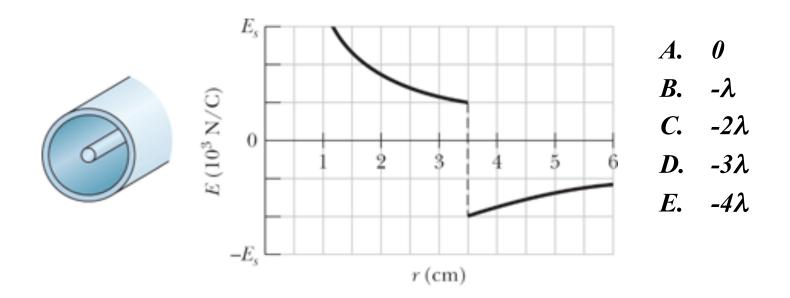
Cylindrical symmetry

Electric field must point radially out/in


Consider a cylindrical Gaussian surface.


$$\oint \vec{E} \bullet d\vec{A} = \int_{ends} \vec{E} \bullet d\vec{A} + \int_{side} \vec{E} \bullet d\vec{A}$$

For the ends of the cylinder $\vec{E} \cdot d\vec{A} = 0$


For the side of the cylinder $\vec{E} \bullet d\vec{A} = EdA$

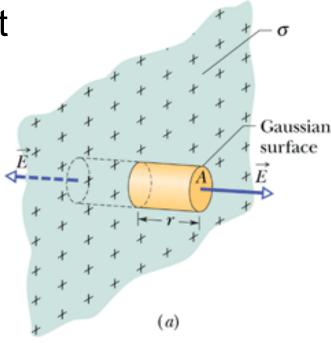
$$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = \varepsilon_0 E \int dA = \varepsilon_0 E \left(2\pi rh \right) = q_{enc} = \lambda h$$

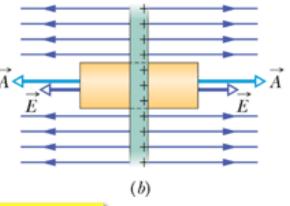
A coaxial cable can be accurately modelled as a long thin wire surrounded by an insulating material, which is then surrounded by a thin conducting shell. The plot shows the electric field as the function of distance from the center of such a coaxial cable. If the linear charge density on the cental conductor is λ , what is the linear charge density on the external conductor?

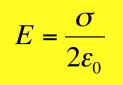
Insulating sheet

Consider a uniform distribution of charges in a large, flat *insulating sheet*

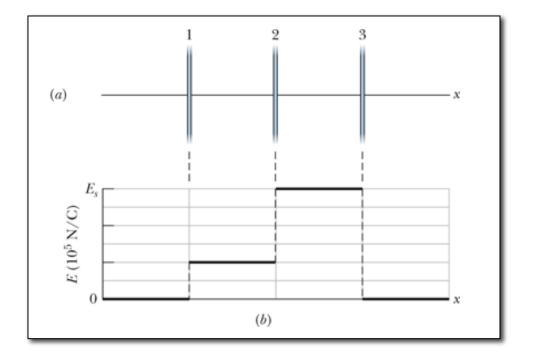
Consider a cylindrical Gaussian surface $\oint \vec{E} \cdot d\vec{A} = \int_{end-1} \vec{E} \cdot d\vec{A} + \int_{end-2} \vec{E} \cdot d\vec{A} + \int_{side} \vec{E} \cdot d\vec{A}$

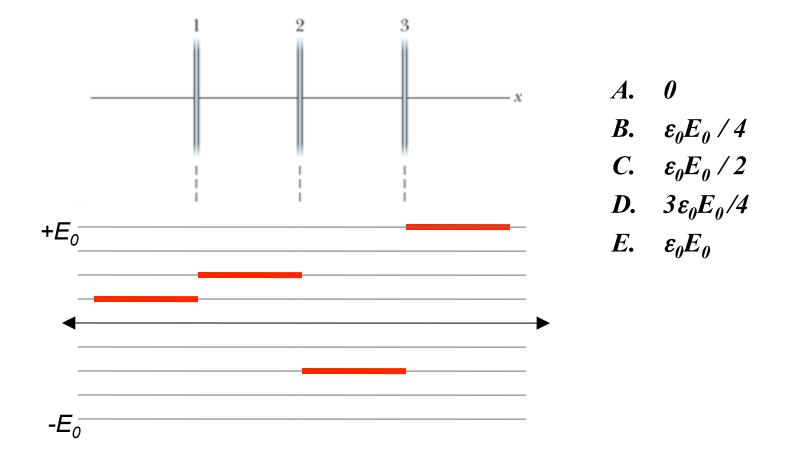

Planar symmetry \rightarrow electric field must point perpendicular to the sheet


For the sides of the cylinder $\vec{E} \cdot d\vec{A} = 0$

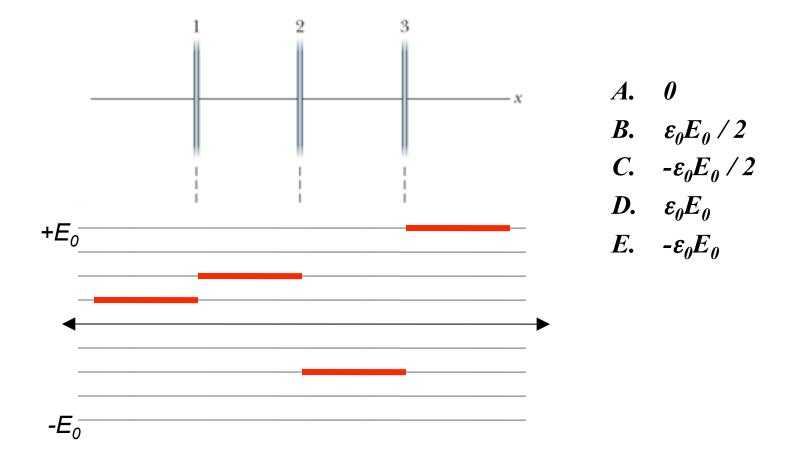

For the ends of the cylinder $\vec{E} \cdot d\vec{A} = EdA$

$$\oint \vec{E} \cdot d\vec{A} = E \int_{end-1} dA + E \int_{end-2} dA$$

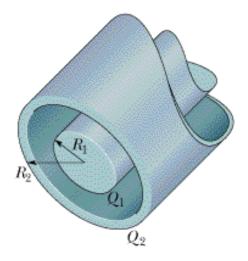

$$\varepsilon_0 \oint \vec{E} \bullet d\vec{A} = 2EA = q_{enc} = \sigma A$$



The figure below shows three plastic sheets that are large, parallel, and uniformly charged. The components of the net electric field along an x axis through the sheets are also plotted. (a) What is σ_1 ? (b) What is $\sigma_1 + \sigma_2 + \sigma_3$



A.
$$0$$
B. $\varepsilon_0 E_s / 2$ C. $\varepsilon_0 E_s / 3$ D. $\varepsilon_0 E_s / 6$ E. $-\sigma_2$


Three thin non conducting sheets are shown below. What is charge density on sheet 1?

Three thin non conducting sheets are shown below. What is charge density on sheet 2?

The figure below is a section of a conducting rod of radius $R_1 = 1.00 \text{ mm}$ and length L = 10.0 m inside a thick-walled coaxial conducting cylindrical shell of radius $R_2 = 10.0R_1$ and the (same) length *L*. The net charge on the rod is $Q_1 = +3.4 \text{ pC}$ that on the shell is $Q_2 = -2.0Q_1$. What is the magnitude and direction of the electric field at $r = 2.0R_2$ and $r = 5.0 R_1$?

Two very long, thin, plastic rods lie in the z direction at (x=-a,y=0) and (x=+a,y=0). The rods carry a uniform charge density λ . Find an expression net electric field for points that lie on the y axis. At what point on the y axis is the magnitude of the electric field a maximum?