Formula Sheet for LSU Physics 2113, First Exam, Fall '16

• Constants, definitions:

Uniform charge densities: $\lambda = \frac{Q}{L}, \;\; \sigma = \frac{Q}{A}, \;\; \rho = \frac{Q}{V}$

• Kinematics (constant acceleration):

$$v = v_o + at$$
 $x - x_o = \frac{1}{2}(v_o + v)t$ $x - x_o = v_o t + \frac{1}{2}at^2$ $v^2 = v_o^2 + 2a(x - x_o)$

• Circular motion:

$$F_c=ma_c=rac{mv^2}{r},~~T=rac{2\pi r}{v},~~v=\omega r$$

• General (work, def. of potential energy, kinetic energy):

$$K=rac{1}{2}mv^2$$
 $ec{F}_{
m net}=mec{a}$ $E_{
m mech}=K+U$ $W=-\Delta U$ (by field) $W_{ext}=\Delta U=-W$ (if objects are initially and finally at rest)

• Gravity:

Newton's law:
$$|\vec{F}| = G \frac{m_1 m_2}{r^2}$$
, Gravitational acceleration (planet of mass M): $a_g = \frac{GM}{r^2}$ Law of periods: $T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$, Potential Energy: $U_g = -G \frac{m_1 m_2}{r_{12}}$ Potential Energy of a System (more than 2 masses): $U_g = -\left(G \frac{m_1 m_2}{r_{12}} + G \frac{m_1 m_3}{r_{13}} + G \frac{m_2 m_3}{r_{23}} + \ldots\right)$

• Electrostatics:

Coulomb's law: $|\vec{F}| = k \frac{|q_1||q_2|}{r^2}$, Force on a charge in an electric field: $\vec{F} = q\vec{E}$ Electric field:

Of a point charge:
$$|\vec{E}| = k \frac{|q|}{r^2}$$
, An infinite line charge: $|\vec{E}| = \frac{2k\lambda}{r}$

Of a dipole on axis, far away from the dipole: $\vec{E} = \frac{2k\vec{p}}{z^3}$

At the center of uniformly charged arc of angle ϕ : $|ec{E}| = rac{\lambda \sin(\phi/2)}{2\pi arepsilon_0 R}$

Along the line through the center of uniformly charged disk: $|\vec{E}| = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}}\right)$

Of an infinite non-conducting plane: $E = \frac{\sigma}{2\varepsilon_o}$

An infinite conducting plane or close to the conducting surface: $E = \frac{\sigma}{\varepsilon_o}$

Torque on a dipole in an \vec{E} field: $\vec{\tau} = \vec{p} \times \vec{E}$, Potential energy of a dipole in \vec{E} field: $U = -\vec{p} \cdot \vec{E}$

• Electric flux:
$$\Phi = \int \vec{E} \cdot d\vec{A}$$

• Gauss' law:
$$arepsilon_o \oint ec{E} \cdot dec{A} = q_{enc}$$