Formula Sheet for LSU Physics 2113, Third Exam, Fall '16

• Constants, definitions:

$$g=9.8 \, {
m m \over s^2}$$
 $arepsilon_o=8.85 imes 10^{-12} \, {
m C^2 \over
m Nm^2}$ $G=6.67 imes 10^{-11} \, {
m m^3/(kg \cdot s^2)}$ $R_{Earth}=6.37 imes 10^6 \, {
m m}$ $c=3.00 imes 10^8 \, {
m m/s}$ $M_{Earth}=5.98 imes 10^{24} \, {
m kg}$ $e=1.602 imes 10^{-19} \, {
m C}$ $R_{Moon}=1.74 imes 10^6 \, {
m m}$ $1 \, {
m eV}=e\, (1{
m V})=1.60 imes 10^{-19} \, {
m J}$ $M_{Moon}=7.36 imes 10^{22} \, {
m kg}$ $m_p=1.67 imes 10^{-27} \, {
m kg}$ $M_{Sun}=1.99 imes 10^{30} \, {
m kg}$ $m_e=9.11 imes 10^{-31} \, {
m kg}$ ${
m Earth-Sun \ distance}=1.50 imes 10^{11} \, {
m m}$ dipole moment: $\vec{p}=q\vec{d}$ ${
m Earth-Moon \ distance}=3.82 imes 10^8 \, {
m m}$ ${
m Circumference \ of \ a \ circle:} 2\pi R$

 $k = \frac{1}{4\pi\varepsilon_o} = 8.99 \times 10^9 \frac{\mathrm{Nm}^2}{\mathrm{C}^2}$ Cylinder's side area: $A = 2\pi r \ell$ Volume of a cylinder: $V = \pi r^2 \ell$ Volume element: $dV = 2\pi \ell r dr$ Area of a circle: $A = \pi r^2$ Area element: $dA = 2\pi r dr$ Area of a sphere: $A = 4\pi r^2$ Volume of a sphere: $V = \frac{4}{3}\pi r^3$ Volume element: $dV = 4\pi r^2 dr$

Uniform charge densities: $\lambda = \frac{Q}{L}, \;\; \sigma = \frac{Q}{A}, \;\; \rho = \frac{Q}{V}$

• Kinematics (constant acceleration):

$$v = v_o + at$$
 $x - x_o = \frac{1}{2}(v_o + v)t$ $x - x_o = v_o t + \frac{1}{2}at^2$ $v^2 = v_o^2 + 2a(x - x_o)$

• Circular motion:

$$F_c=ma_c=rac{mv^2}{r}, ~~T=rac{2\pi r}{v}, ~~v=\omega r$$

• General (work, def. of potential energy, kinetic energy):

$$K = \frac{1}{2}mv^2$$
 $\vec{F}_{\rm net} = m\vec{a}$ $E_{\rm mech} = K + U$ $W = -\Delta U$ (by field) $W_{ext} = \Delta U = -W$ (if objects are initially and finally at rest)

• Gravity:

Newton's law:
$$|\vec{F}| = G \frac{m_1 m_2}{r^2}$$
, Gravitational acceleration (planet of mass M): $a_g = \frac{GM}{r^2}$ Law of periods: $T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$, Potential Energy: $U_g = -G \frac{m_1 m_2}{r_{12}}$

Potential Energy of a System (more than 2 masses): $U_g = -\left(G\frac{m_1m_2}{r_{12}} + G\frac{m_1m_3}{r_{13}} + G\frac{m_2m_3}{r_{23}} + \ldots\right)$

• Electrostatics:

Coulomb's law: $|\vec{F}|=k\frac{|q_1||q_2|}{r^2}$, Force on a charge in an electric field: $\vec{F}=q\vec{E}$ Electric field:

Of a point charge: $|\vec{E}| = k \frac{|q|}{r^2}$, An infinite line charge: $|\vec{E}| = \frac{2k\lambda}{r}$

Of a dipole on axis, far away from the dipole: $\vec{E} = \frac{2k\vec{p}}{z^3}$

At the center of uniformly charged arc of angle ϕ : $|ec{E}| = rac{\lambda \sin(\phi/2)}{2\pi arepsilon_0 R}$

Along the line through the center of uniformly charged disk: $|\vec{E}| = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}}\right)$

Of an infinite non-conducting plane: $E = \frac{\sigma}{2\varepsilon_o}$

An infinite conducting plane or close to the conducting surface: $E = \frac{\sigma}{\varepsilon_o}$

Torque on a dipole in an \vec{E} field: $\vec{\tau} = \vec{p} \times \vec{E}$, Potential energy of a dipole in \vec{E} field: $U = -\vec{p} \cdot \vec{E}$

ullet Electric flux: $\Phi = \int ec{E} \cdot dec{A}$

• Gauss' law:
$$\varepsilon_o \oint \vec{E} \cdot d\vec{A} = q_{enc}$$

• Electric potential, potential energy, and work:

$$V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}$$
 In a uniform field: $\Delta V = -\vec{E} \cdot \Delta \vec{s} = -Ed\cos\theta$
 $\vec{E} = -\vec{\nabla}V, \ E_x = -\frac{\partial V}{\partial x}, \ E_y = -\frac{\partial V}{\partial y}, \ E_z = -\frac{\partial V}{\partial z}$

Potential of a point charge q: $V = k \frac{q}{r}$ Potential of n point charges: $V = \sum_{i=1}^{n} V_i = k \sum_{i=1}^{n} \frac{q_i}{r_i}$ Electric potential energy: $\Delta U = q\Delta V = -W_{\text{field}}$, $\Delta U = W_{ext}$ (if objects are initially and finally at rest)

Potential energy of two point charges: $U_{12}=W_{\mathrm{ext}}=q_2V_1=q_1V_2=krac{q_1q_2}{r_1}$

• Capacitance: definition: q = CV

Capacitor with a dielectric: $C = \kappa C_{air}$ Parallel plate: $C = \varepsilon_{\circ} \frac{A}{d}$ Potential Energy: $U = \frac{q^2}{2C} = \frac{1}{2}qV = \frac{1}{2}CV^2$ Energy density of electric field: $u = \frac{1}{2}\kappa\varepsilon_{o}|\vec{E}|^2$ Capacitors in parallel: $C_{eq} = \sum C_{i}$ Capacitors in series: $\frac{1}{C_{eq}} = \sum \frac{1}{C_{i}}$

ullet Current: $i=rac{dq}{dt}=\int ec{J}\cdot dec{A},$ Const. current density: $J=rac{i}{A},$ Drift speed: $ec{v}_d=rac{ec{J}}{ne}$

ullet Definition of resistance: $R=rac{V}{i}$ Definition of resistivity: $ho=rac{|ec{E}|}{|ec{J}|}$

• Resistance in a conducting wire: $R = \rho \frac{L}{A}$ Temperature dependence: $\rho - \rho_0 = \rho_0 \alpha (T - T_0)$

• Resistors in series: $R_{eq} = \sum R_i$ Resistors in parallel: $\frac{1}{R_{eq}} = \sum \frac{1}{R_i}$

• Power in an electrical device: P = iV Power dissipated in a resistor: $P = i^2R = \frac{V^2}{R}$

ullet Definition of $\mathit{emf}: \mathcal{E} = rac{dW}{dq}$

• Charging a capacitor, series RC circuit: $q(t) = C\mathcal{E}(1 - e^{-\frac{t}{\tau_c}})$, time constant $\tau_C = RC$ Discharging: $q(t) = q_o e^{-\frac{t}{\tau_c}}$

• Magnetic Fields:

Magnetic force on a charge q: $\vec{F} = q\vec{v} \times \vec{B}$ Lorentz force: $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$ Radius for a Circular Motion in a magnetic field \vec{B} : $r = \frac{mv_{\perp}}{qB}$ with period: $T = \frac{2\pi m}{qB}$

Magnetic force on a length of straight wire in a uniform $\vec{B} \colon \vec{F} = i \vec{L} \times \vec{B}$

Magnetic Dipole: $\vec{\mu} = Ni\vec{A}$ Torque: $\vec{\tau} = \vec{\mu} \times \vec{B}$ Magnetic Potential Energy: $U = -\vec{\mu} \cdot \vec{B}$

• Generating Magnetic Fields: $(\mu_0 = 4\pi \times 10^{-7} \frac{\text{T} \cdot \text{m}}{\text{A}})$ Biot-Savart Law: $d\vec{B} = \frac{\mu_0}{4\pi} \frac{i d\vec{s} \times \vec{r}}{r^3}$

Magnetic field of a long straight wire: $B=rac{\mu_0}{2\pi}rac{i}{r}, \quad ext{Mag. field at the arc center: } B=rac{\mu_0}{4\pi}rac{i}{r_{arc}}\phi$

Force between parallel current-carrying wires: $F_{ab} = \frac{\mu_0 i_a i_b}{2\pi d} L$

Ampere's law: $\oint ec{B} \cdot dec{s} = \mu_0 i_{enc}$

Magnetic field of a solenoid: $B = \mu_0 i n$, Magnetic field of a dipole on axis, far away: $\vec{B} = \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{z^3}$