• Constants, definitions:

 $\begin{array}{ll} g=9.8\,\frac{\rm m}{\rm s^2} & \varepsilon_o=8.85\times 10^{-12}\,\frac{\rm C^2}{\rm Nm^2} \\ G=6.67\times 10^{-11}\,{\rm m^3/(kg\cdot s^2)} & R_{Earth}=6.37\times 10^6\,{\rm m} \\ c=3.00\times 10^8\,{\rm m/s} & M_{Earth}=5.98\times 10^{24}\,{\rm kg} \\ e=1.602\times 10^{-19}\,{\rm C} & R_{Moon}=1.74\times 10^6\,{\rm m} \\ 1\,{\rm eV}=e\,(1{\rm V})=1.60\times 10^{-19}\,{\rm J} & M_{Moon}=7.36\times 10^{22}\,{\rm kg} \\ m_p=1.67\times 10^{-27}\,{\rm kg} & M_{Sun}=1.99\times 10^{30}\,{\rm kg} \\ m_e=9.11\times 10^{-31}\,{\rm kg} & {\rm Earth-Sun\ distance}=3.82\times 10^8\,{\rm m} \end{array}$

 $k = \frac{1}{4\pi\varepsilon_o} = 8.99 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2}$ Area of a cylinder: $A = 2\pi r \ell$ Volume of a cylinder: $V = \pi r^2 \ell$ Volume element: $dV = 2\pi \ell r dr$ Area of a circle: $A = \pi r^2$ Area element: $dA = 2\pi r dr$ Area of a sphere: $A = 4\pi r^2$ Volume of a sphere: $V = \frac{4}{3}\pi r^3$ Volume element: $dV = 4\pi r^2 dr$

Uniform charge densities: $\lambda = \frac{Q}{L}, \ \sigma = \frac{Q}{A}, \ \rho = \frac{Q}{V}$

• Kinematics (constant acceleration):

$$v = v_o + at$$
 $x - x_o = \frac{1}{2}(v_o + v)t$ $x - x_o = v_o t + \frac{1}{2}at^2$ $v^2 = v_o^2 + 2a(x - x_o)t$

• Circular motion:

 $F_c=ma_c=rac{mv^2}{r}, \ \ T=rac{2\pi r}{v}, \ \ v=\omega r$

• General (work, def. of potential energy, kinetic energy):

$$\begin{array}{ll} K = \frac{1}{2}mv^2 & \vec{F}_{\rm net} = m\vec{a} & E_{\rm mech} = K + U \\ W = -\Delta U \mbox{ (by field)} & W_{ext} = \Delta U = -W \mbox{ (if objects are initially and finally at rest)} \end{array}$$

• Gravity:

Newton's law: $|\vec{F}| = G \frac{m_1 m_2}{r^2}$, Gravitational acceleration (planet of mass M): $a_g = \frac{GM}{r^2}$ Law of periods: $T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$, Potential Energy: $U_g = -G \frac{m_1 m_2}{r_{12}}$

Potential Energy of a System (more than 2 masses): $U_g = -\left(G\frac{m_1m_2}{r_{12}} + G\frac{m_1m_3}{r_{13}} + G\frac{m_2m_3}{r_{23}} + \dots\right)$

• Electrostatics:

Coulomb's law: $|\vec{F}| = k \frac{|q_1||q_2|}{r^2}$, Force on a charge in an electric field: $\vec{F} = q\vec{E}$ Electric field: Of a point charge: $|\vec{E}| = k \frac{|q|}{r^2}$, An infinite line charge: $|\vec{E}| = \frac{2k\lambda}{r}$ Of a dipole on axis, far away from the dipole: $\vec{E} = \frac{2k\vec{p}}{z^3}$ At the center of uniformly charged arc of angle ϕ : $|\vec{E}| = \frac{\lambda \sin(\phi/2)}{2\pi\varepsilon_0 R}$ Along the line through the center of uniformly charged disk: $|\vec{E}| = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}}\right)$ Of an infinite non-conducting plane: $E = \frac{\sigma}{2\varepsilon_0}$ An infinite conducting plane or close to the conducting surface: $E = \frac{\sigma}{\varepsilon_0}$

Torque on a dipole in an \vec{E} field: $\vec{\tau} = \vec{p} \times \vec{E}$, Potential energy of a dipole in \vec{E} field: $U = -\vec{p} \cdot \vec{E}$ • Electric flux: $\Phi = \int \vec{E} \cdot d\vec{A}$ • Gauss' law: $\varepsilon_o \oint \vec{E} \cdot d\vec{A} = q_{enc}$ • Electric potential, potential energy, and work:

$$\begin{split} V_f - V_i &= -\int_i^f \vec{E} \cdot d\vec{s} & \text{In a uniform field: } \Delta V = -\vec{E} \cdot \Delta \vec{s} = -Ed \cos \theta \\ \vec{E} &= -\vec{\nabla} V, \quad E_x = -\frac{\partial V}{\partial x}, \quad E_y = -\frac{\partial V}{\partial y}, \quad E_z = -\frac{\partial V}{\partial z} \\ \text{Potential of a point charge } q: \quad V = k\frac{q}{r} & \text{Potential of } n \text{ point charges: } V = \sum_{i=1}^n V_i = k\sum_{i=1}^n \frac{q_i}{r_i} \\ \text{Electric potential energy: } \Delta U = q\Delta V = -W_{\text{field}}, \quad \Delta U = W_{ext} \text{ (if objects are initially and finally at rest)} \\ \text{Potential energy of two point charges: } U_{12} = W_{\text{ext}} = q_2 V_1 = q_1 V_2 = k \frac{q_1 q_2}{r_{12}} \end{split}$$

• Capacitance: definition: q = CV

Capacitor with a dielectric: $C = \kappa C_{air}$ Parallel plate: $C = \varepsilon_0 \frac{A}{d}$ Potential Energy: $U = \frac{q^2}{2C} = \frac{1}{2}qV = \frac{1}{2}CV^2$ Energy density of electric field: $u = \frac{1}{2}\kappa\varepsilon_o |\vec{E}|^2$ Capacitors in parallel: $C_{eq} = \sum C_i$ Capacitors in series: $\frac{1}{C_{eq}} = \sum \frac{1}{C_i}$