
PHYS 7411 Spring 2015

Computational Physics

Homework 5

Due by 3:00pm in Nicholson 447 on 13 April 2015

Exercise 1: Cometary orbits

Many comets travel in highly elongated orbits around the Sun. For much of their lives they are far out

in the solar system, moving very slowly, but on rare occasions their orbit brings them close to the Sun

for a fly-by and for a brief period of time they move very fast indeed:

Sun

Comet

slow herefast here

This is a classic example of a system for which an adaptive step size method is useful, because for the

large periods of time when the comet is moving slowly we can use long time-steps, so that the program

runs quickly, but short time-steps are crucial in the brief but fast-moving period close to the Sun.

The differential equation obeyed by a comet is straightforward to derive. The force between the Sun,

with mass M at the origin, and a comet of mass m with position vector r is GMm/r2 in direction −r/r
(i.e., the direction towards the Sun), and hence Newton’s second law tells us that

m
d2r

dt2
= −

(
GMm

r2

)
r

r
.

Canceling the m and taking the x component we have

d2x

dt2
= −GM x

r3
,

and similarly for the other two coordinates. We can, however, throw out one of the coordinates because

the comet stays in a single plane as it orbits. If we orient our axes so that this plane is perpendicular to

the z-axis, we can forget about the z coordinate and we are left with just two second-order equations to

solve:
d2x

dt2
= −GM x

r3
,

d2y

dt2
= −GM y

r3
,

where r =
√
x2 + y2.

a) Turn these two second-order equations into four first-order equations, using the methods you have

learned.

1



b) Write a program to solve your equations using the fourth-order Runge–Kutta method with a fixed

step size. You will need to look up the mass of the Sun and Newton’s gravitational constant G.

As an initial condition, take a comet at coordinates x = 4 billion kilometers and y = 0 (which is

somewhere out around the orbit of Neptune) with initial velocity vx = 0 and vy = 500 m s−1. Make

a graph showing the trajectory of the comet (i.e., a plot of y against x).

Choose a fixed step size h that allows you to accurately calculate at least two full orbits of the

comet. Since orbits are periodic, a good indicator of an accurate calculation is that successive

orbits of the comet lie on top of one another on your plot. If they do not then you need a smaller

value of h. Give a short description of your findings. What value of h did you use? What did you

observe in your simulation? How long did the calculation take?

c) Make a copy of your program and modify the copy to do the calculation using an adaptive step

size. Set a target accuracy of δ = 1 kilometer per year in the position of the comet and again plot

the trajectory. What do you see? How do the speed, accuracy, and step size of the calculation

compare with those in part (b)?

d) Modify your program to place dots on your graph showing the position of the comet at each Runge–

Kutta step around a single orbit. You should see the steps getting closer together when the comet

is close to the Sun and further apart when it is far out in the solar system.

Calculations like this can be extended to cases where we have more than one orbiting body—see

Exercise 8.16 for an example. We can include planets, moons, asteroids, and others. Analytic calculations

are impossible for such complex systems, but with careful numerical solution of differential equations we

can calculate the motions of objects throughout the entire solar system.

Exercise 2: The three-body problem

If you mastered Exercise 8.10 on cometary orbits, here’s a more challenging problem in celestial mechanics—

and a classic in the field—the three-body problem.

Three stars, in otherwise empty space, are initially at rest, with the following masses and positions,

in arbitrary units:

Mass x y

Star 1 150 3 1

Star 2 200 −1 −2

Star 3 250 −1 1

(All the z coordinates are zero, so the three stars lie in the xy plane.)

a) Show that the equation of motion governing the position r1 of the first star is

d2r1
dt2

= Gm2
r2 − r1
|r2 − r1|3

+Gm3
r3 − r1
|r3 − r1|3

and derive two similar equations for the positions r2 and r3 of the other two stars. Then convert

the three second-order equations into six equivalent first-order equations, using the techniques you

have learned.

b) Working in units where G = 1, write a program to solve your equations and hence calculate the

motion of the stars from t = 0 to t = 2. Make a plot showing the trails of all three stars (i.e., a

graph of y against x for each star).

2



c) Modify your program to make an animation of the motion on the screen from t = 0 to t = 10. You

may wish to make the three stars different sizes or colors (or both) so that you can tell which is

which.

To do this calculation properly you will need to use an adaptive step size method, for the same reasons

as in Exercise 8.10—the stars move very rapidly when they are close together and very slowly when they

are far apart. An adaptive method is the only way to get the accuracy you need in the fast-moving parts

of the motion without wasting hours uselessly calculating the slow parts with a tiny step size. Construct

your program so that it introduces an error of no more than 10−3 in the position of any star per unit

time.

Creating an animation with an adaptive step size can be challenging, since the steps do not all

correspond to the same amount of real time. The simplest thing to do is just to ignore the varying step

sizes and make an animation as if they were all equal, updating the positions of the stars on the screen

at every step or every several steps. This will give you a reasonable visualization of the motion, but it

will look a little odd because the stars will slow down, rather than speed up, as they come close together,

because the adaptive calculation will automatically take more steps in this region.

A better solution is to vary the frame-rate of your animation so that the frames run proportionally

faster when h is smaller, meaning that the frame-rate needs to be equal to C/h for some constant C.

You can achieve this by using the rate function from the visual package to set a different frame-rate

on each step, equal to C/h. If you do this, it’s a good idea to not let the value of h grow too large, or

the animation will make some large jumps that look uneven on the screen. Insert extra program lines to

ensure that h never exceeds a value hmax that you choose. Values for the constants of around C = 0.1

and hmax = 10−3 seem to give reasonable results.

Exercise 3: The Schrödinger equation and the Crank–Nicolson method

Perhaps the most important partial differential equation, at least for physicists, is the Schrödinger equa-

tion. This exercise uses the Crank–Nicolson method to solve the full time-dependent Schrödinger equation

and hence develop a picture of how a wavefunction evolves over time. The following exercise, Exercise 9.9,

solves the same problem again, but using the spectral method.

We will look at the Schrödinger equation in one dimension. The techniques for calculating solutions

in two or three dimensions are basically the same as for one dimension, but the calculations take much

longer on the computer, so in the interests of speed we’ll stick with one dimension. In one dimension the

Schrödinger equation for a particle of mass M with no potential energy reads

− h̄2

2M

∂2ψ

∂x2
= ih̄

∂ψ

∂t
.

For simplicity, let’s put our particle in a box with impenetrable walls, so that we only have to solve the

equation in a finite-sized space. The box forces the wavefunction ψ to be zero at the walls, which we’ll

put at x = 0 and x = L.

Replacing the second derivative in the Schrödinger equation with a finite difference and applying

Euler’s method, we get the FTCS equation

ψ(x, t+ h) = ψ(x, t) + h
ih̄

2ma2
[
ψ(x+ a, t) + ψ(x− a, t)− 2ψ(x, t)

]
,

where a is the spacing of the spatial grid points and h is the size of the time-step. (Be careful not

to confuse the time-step h with Planck’s constant h̄.) Performing a similar step in reverse, we get the

implicit equation

ψ(x, t+ h)− h ih̄

2ma2
[
ψ(x+ a, t+ h) + ψ(x− a, t+ h)− 2ψ(x, t+ h)

]
= ψ(x, t).

3



And taking the average of these two, we get the Crank–Nicolson equation for the Schrödinger equation:

ψ(x, t+ h)− h ih̄

4ma2
[
ψ(x+ a, t+ h) + ψ(x− a, t+ h)− 2ψ(x, t+ h)

]
= ψ(x, t) + h

ih̄

4ma2
[
ψ(x+ a, t) + ψ(x− a, t)− 2ψ(x, t)

]
.

This gives us a set of simultaneous equations, one for each grid point.

The boundary conditions on our problem tell us that ψ = 0 at x = 0 and x = L for all t. In between

these points we have grid points at a, 2a, 3a, and so forth. Let us arrange the values of ψ at these interior

points into a vector

ψ(t) =


ψ(a, t)

ψ(2a, t)

ψ(3a, t)
...

 .

Then the Crank–Nicolson equations can be written in the form

Aψ(t+ h) = Bψ(t),

where the matrices A and B are both symmetric and tridiagonal:

A =


a1 a2
a2 a1 a2

a2 a1 a2
a2 a1

. . .

 , B =


b1 b2
b2 b1 b2

b2 b1 b2
b2 b1

. . .

 ,

with

a1 = 1 + h
ih̄

2ma2
, a2 = −h ih̄

4ma2
, b1 = 1− h ih̄

2ma2
, b2 = h

ih̄

4ma2
.

(Note the different signs and the factors of 2 and 4 in the denominators.)

The equation Aψ(t + h) = Bψ(t) has precisely the form Ax = v of the simultaneous equation

problems we studied in Chapter 6 and can be solved using the same methods. Specifically, since the

matrix A is tridiagonal in this case, we can use the fast tridiagonal version of Gaussian elimination that

we looked at in Section 6.1.6.

Consider an electron (mass M = 9.109 × 10−31 kg) in a box of length L = 10−8 m. Suppose that at

time t = 0 the wavefunction of the electron has the form

ψ(x, 0) = exp

[
−(x− x0)2

2σ2

]
eiκx,

where

x0 =
L

2
, σ = 1× 10−10 m, κ = 5× 1010 m−1,

and ψ = 0 on the walls at x = 0 and x = L. (This expression for ψ(x, 0) is not normalized—there should

really be an overall multiplying coefficient to make sure that the probability density for the electron

integrates to unity. It’s safe to drop the constant, however, because the Schrödinger equation is linear,

so the constant cancels out on both sides of the equation and plays no part in the solution.)

4



a) Write a program to perform a single step of the Crank–Nicolson method for this electron, calculating

the vector ψ(t) of values of the wavefunction, given the initial wavefunction above and using N =

1000 spatial slices with a = L/N . Your program will have to perform the following steps. First,

given the vector ψ(0) at t = 0, you will have to multiply by the matrix B to get a vector v = Bψ.

Because of the tridiagonal form of B, this is fairly simple. The ith component of v is given by

vi = b1ψi + b2(ψi+1 + ψi−1).

You will also have to choose a value for the time-step h. A reasonable choice is h = 10−18 s.

Second you will have to solve the linear system Ax = v for x, which gives you the new value of ψ.

You could do this using a standard linear equation solver like the function solve in numpy.linalg,

but since the matrix A is tridiagonal a better approach would be to use the fast solver for banded

matrices given in Appendix E, which can be imported from the file banded.py (which you can

find in the on-line resources). Note that although the wavefunction of a particle in principle has

a complex value, in this case the wavefunction is always real—all the coefficients in the equations

above are real numbers so if, as here, the wavefunction starts off real, then it remains real. Thus

you do not need to use a complex array to represent the vector ψ. A real one will do the job.

Third, once you have the code in place to perform a single step of the calculation, extend your

program to perform repeated steps and hence solve for ψ at a sequence of times a separation h

apart. Note that the matrix A is independent of time, so it doesn’t change from one step to another.

You can set up the matrix just once and then keep on reusing it for every step.

b) Extend your program to make an animation of the solution by displaying the real part of the

wavefunction at each time-step. You can use the function rate from the package visual to ensure

a smooth frame-rate for your animation—see Section 3.5 on page 117.

There are various ways you could do the animation. A simple one would be to just place a small

sphere at each grid point with vertical position representing the value of the real part of the

wavefunction. A more sophisticated approach would be to use the curve object from the visual

package—see the on-line documentation at www.vpython.org for details. Depending on what co-

ordinates you use for measuring x, you may need to scale the values of the wavefunction by an

additional constant to make them a reasonable size on the screen. (If you measure your x position

in meters then a scale factor of about 10−9 works well for the wavefunction.)

c) Run your animation for a while and describe what you see. Write a few sentences explaining in

physics terms what is going on in the system.

Exercise 4: Volume of a hypersphere

This exercise asks you to estimate the volume of a sphere of unit radius in ten dimensions using a Monte

Carlo method. Consider the equivalent problem in two dimensions, the area of a circle of unit radius:

5



+1

+1−1

−1

y

x

The area of the circle, the shaded area above, is given by the integral

I =

∫∫ +1

−1
f(x, y) dx dy,

where f(x, y) = 1 everywhere inside the circle and zero everywhere outside. In other words,

f(x, y) =

{
1 if x2 + y2 ≤ 1,

0 otherwise.

So if we didn’t already know the area of the circle, we could calculate it by Monte Carlo integration. We

would generate a set of N random points (x, y), where both x and y are in the range from −1 to 1. Then

the two-dimensional version of Eq. (10.33) for this calculation would be

I ' 4

N

N∑
i=1

f(xi, yi).

Generalize this method to the ten-dimensional case and write a program to perform a Monte Carlo

calculation of the volume of a sphere of unit radius in ten dimensions.

If we had to do a ten-dimensional integral the traditional way, it would take a very long time.

Even with only 100 points along each axis (which wouldn’t give a very accurate result) we’d still have

10010 = 1020 points to sample, which is impossible on any computer. But using the Monte Carlo method

we can get a pretty good result with a million points or so.

6


