
PHYS 7411 Spring 2015

Computational Physics

Homework 4

Due by 3:00pm in Nicholson 447 on 30 March 2015

Exercise 1: Asymmetric quantum well

Quantum mechanics can be formulated as a matrix problem and solved on a computer using linear algebra

methods. Suppose, for example, we have a particle of mass M in a one-dimensional quantum well of

width L, but not a square well like the examples you’ve probably seen before. Suppose instead that the

potential V (x) varies somehow inside the well:

x = 0 x = L

V(x)

We cannot solve such problems analytically in general, but we can solve them on the computer.

In a pure state of energy E, the spatial part of the wavefunction obeys the time-independent Schrödinger

equation Ĥψ(x) = Eψ(x), where the Hamiltonian operator Ĥ is given by

Ĥ = − h̄2

2M

d2

dx2
+ V (x).

For simplicity, let’s assume that the walls of the well are infinitely high, so that the wavefunction is zero

outside the well, which means it must go to zero at x = 0 and x = L. In that case, the wavefunction can

be expressed as a Fourier sine series thus:

ψ(x) =
∞∑
n=1

ψn sin
πnx

L
,

where ψ1, ψ2, . . . are the Fourier coefficients.

a) Noting that, for m,n positive integers∫ L

0
sin

πmx

L
sin

πnx

L
dx =

{
L/2 if m = n,

0 otherwise,

1

show that the Schrödinger equation Ĥψ = Eψ implies that
∞∑
n=1

ψn

∫ L

0
sin

πmx

L
Ĥ sin

πnx

L
dx = 1

2LEψm.

Hence, defining a matrix H with elements

Hmn =
2

L

∫ L

0
sin

πmx

L
Ĥ sin

πnx

L
dx

=
2

L

∫ L

0
sin

πmx

L

[
− h̄2

2M

d2

dx2
+ V (x)

]
sin

πnx

L
dx,

show that Schrödinger’s equation can be written in matrix form as Hψ = Eψ, where ψ is the

vector (ψ1, ψ2, . . .). Thus ψ is an eigenvector of the Hamiltonian matrix H with eigenvalue E. If

we can calculate the eigenvalues of this matrix, then we know the allowed energies of the particle

in the well.

b) For the case V (x) = ax/L, evaluate the integral in Hmn analytically and so find a general expression

for the matrix element Hmn. Show that the matrix is real and symmetric. You’ll probably find it

useful to know that

∫ L

0
x sin

πmx

L
sin

πnx

L
dx =

0 if m 6= n and both even or both odd,

−
(

2L

π

)2 mn

(m2 − n2)2
if m 6= n and one is even, one is odd,

L2/4 if m = n.

Write a Python program to evaluate your expression for Hmn for arbitrary m and n when the

particle in the well is an electron, the well has width 5 Å, and a = 10 eV. (The mass and charge of

an electron are 9.1094× 10−31 kg and 1.6022× 10−19 C respectively.)

c) The matrix H is in theory infinitely large, so we cannot calculate all its eigenvalues. But we can

get a pretty accurate solution for the first few of them by cutting off the matrix after the first

few elements. Modify the program you wrote for part (b) above to create a 10 × 10 array of the

elements of H up to m,n = 10. Calculate the eigenvalues of this matrix using the appropriate

function from numpy.linalg and hence print out, in units of electron volts, the first ten energy

levels of the quantum well, within this approximation. You should find, for example, that the

ground-state energy of the system is around 5.84 eV. (Hint: Bear in mind that matrix indices in

Python start at zero, while the indices in standard algebraic expressions, like those above, start at

one. You will need to make allowances for this in your program.)

d) Modify your program to use a 100 × 100 array instead and again calculate the first ten energy

eigenvalues. Comparing with the values you calculated in part (c), what do you conclude about

the accuracy of the calculation?

e) Now modify your program once more to calculate the wavefunction ψ(x) for the ground state and

the first two excited states of the well. Use your results to make a graph with three curves showing

the probability density |ψ(x)|2 as a function of x in each of these three states. Pay special attention

to the normalization of the wavefunction—it should satisfy the condition
∫ L
0 |ψ(x)|2 dx = 1. Is this

true of your wavefunction?

Exercise 2: The biochemical process of glycolysis, the breakdown of glucose in the body to release

energy, can be modeled by the equations

dx

dt
= −x+ ay + x2y,

dy

dt
= b− ay − x2y.

2

Here x and y represent concentrations of two chemicals, ADP and F6P, and a and b are positive constants.

One of the important features of nonlinear linear equations like these is their stationary points, meaning

values of x and y at which the derivatives of both variables become zero simultaneously, so that the

variables stop changing and become constant in time. Setting the derivatives to zero above, the stationary

points of our glycolysis equations are solutions of

−x+ ay + x2y = 0, b− ay − x2y = 0.

a) Demonstrate analytically that the solution of these equations is

x = b, y =
b

a+ b2
.

b) Show that the equations can be rearranged to read

x = y(a+ x2), y =
b

a+ x2

and write a program to solve these for the stationary point using the relaxation method with a = 1

and b = 2. You should find that the method fails to converge to a solution in this case.

c) Find a different way to rearrange the equations such that when you apply the relaxation method

again it now converges to a fixed point and gives a solution. Verify that the solution you get agrees

with part (a).

Exercise 3: Consider the following semidefinite program:

minx

subject to [
x 1

1 y

]
≥ 0.

a) Draw the feasible set. Is it convex?

b) Write the dual SDP.

c) Is the primal strictly feasible? Is the dual strictly feasible?

d) What can you say about strong duality?

Exercise 4: Fast Fourier transform

Write your own program to compute the fast Fourier transform for the case where N is a power of two,

based on the formulas given in Section 7.4.1. As a test of your program, use it to calculate the Fourier

transform of the data in the file pitch.txt, which can be found in the on-line resources. A plot of the

data is shown in Fig. 7.3. You should be able to duplicate the results for the Fourier transform shown in

Fig. 7.4.

This exercise is quite tricky. You have to calculate the coefficients E
(m,j)
k from Eq. (7.43) for all

levels m, which means that first you will have to plan how the coefficients will be stored. Since, as

we have seen, there are exactly N of them at every level, one way to do it would be to create a two-

dimensional complex array of size N × (1+log2N), so that it has N complex numbers for each level from

3

zero to log2N . Then within level m you have 2m individual transforms denoted by j = 0 . . . 2m− 1, each

with N/2m coefficients indexed by k. A simple way to arrange the coefficients would be to put all the

k = 0 coefficients in a block one after another, then all the k = 1 coefficients, and so forth. Then E
(m,j)
k

would be stored in the j + 2mk element of the array.

This method has the advantage of being quite simple to program, but the disadvantage of using

up a lot of memory space. The array contains N log2N complex numbers, and a complex number

typically takes sixteen bytes of memory to store. So if you had to do a large Fourier transform of, say,

N = 108 numbers, it would take 16N log2N ' 42 gigabytes of memory, which is much more than most

computers have.

An alternative approach is to notice that we do not really need to store all of the coefficients. At any

one point in the calculation we only need the coefficients at the current level and the previous level (from

which the current level is calculated). If one is clever one can write a program that uses only two arrays,

one for the current level and one for the previous level, each consisting of N complex numbers. Then our

transform of 108 numbers would require less than four gigabytes, which is fine on most computers.

(There is a third way of storing the coefficients that is even more efficient. If you store the coefficients

in the correct order, then you can arrange things so that every time you compute a coefficient for the

next level, it gets stored in the same place as the old coefficient from the previous level from which it

was calculated, and which you no longer need. With this way of doing things you only need one array

of N complex numbers—we say the transform is done “in place.” Unfortunately, this in-place Fourier

transform is much harder to work out and harder to program. If you are feeling particularly ambitious

you might want to give it a try, but it’s not for the faint-hearted.)

Exercise 5: Image deconvolution

You’ve probably seen it on TV, in one of those crime drama shows. They have a blurry photo of a crime

scene and they click a few buttons on the computer and magically the photo becomes sharp and clear,

so you can make out someone’s face, or some lettering on a sign. Surely (like almost everything else on

such TV shows) this is just science fiction? Actually, no. It’s not. It’s real and in this exercise you’ll

write a program that does it.

When a photo is blurred each point on the photo gets smeared out according to some “smearing

distribution,” which is technically called a point spread function. We can represent this smearing math-

ematically as follows. For simplicity let’s assume we’re working with a black and white photograph, so

that the picture can be represented by a single function a(x, y) which tells you the brightness at each

point (x, y). And let us denote the point spread function by f(x, y). This means that a single bright dot

at the origin ends up appearing as f(x, y) instead. If f(x, y) is a broad function then the picture is badly

blurred. If it is a narrow peak then the picture is relatively sharp.

In general the brightness b(x, y) of the blurred photo at point (x, y) is given by

b(x, y) =

∫ K

0

∫ L

0
a(x′, y′)f(x− x′, y − y′) dx′ dy′,

where K × L is the dimension of the picture. This equation is called the convolution of the picture with

the point spread function.

Working with two-dimensional functions can get complicated, so to get the idea of how the math

works, let’s switch temporarily to a one-dimensional equivalent of our problem. Once we work out the

details in 1D we’ll return to the 2D version. The one-dimensional version of the convolution above would

be

b(x) =

∫ L

0
a(x′)f(x− x′) dx′.

4

The function b(x) can be represented by a Fourier series as in Eq. (7.5):

b(x) =
∞∑

k=−∞
b̃k exp

(
i
2πkx

L

)
,

where

b̃k =
1

L

∫ L

0
b(x) exp

(
−i

2πkx

L

)
dx

are the Fourier coefficients. Substituting for b(x) in this equation gives

b̃k =
1

L

∫ L

0

∫ L

0
a(x′)f(x− x′) exp

(
−i

2πkx

L

)
dx′ dx

=
1

L

∫ L

0

∫ L

0
a(x′)f(x− x′) exp

(
−i

2πk(x− x′)
L

)
exp

(
−i

2πkx′

L

)
dx′ dx.

Now let us change variables to X = x− x′, and we get

b̃k =
1

L

∫ L

0
a(x′) exp

(
−i

2πkx′

L

)∫ L−x′

−x′
f(X) exp

(
−i

2πkX

L

)
dX dx′.

If we make f(x) a periodic function in the standard fashion by repeating it infinitely many times to the

left and right of the interval from 0 to L, then the second integral above can be written as∫ L−x′

−x′
f(X) exp

(
−i

2πkX

L

)
dX =

∫ 0

−x′
f(X) exp

(
−i

2πkX

L

)
dX

+

∫ L−x′

0
f(X) exp

(
−i

2πkX

L

)
dX

= exp

(
i
2πkL

L

)∫ L

L−x′
f(X) exp

(
−i

2πkX

L

)
dX +

∫ L−x′

0
f(X) exp

(
−i

2πkX

L

)
dX

=

∫ L

0
f(X) exp

(
−i

2πkX

L

)
dX,

which is simply L times the Fourier transform f̃k of f(x). Substituting this result back into our equation

for b̃k we then get

b̃k =

∫ L

0
a(x′) exp

(
−i

2πkx′

L

)
f̃k dx′ = L ãkf̃k.

In other words, apart from the factor of L, the Fourier transform of the blurred photo is the product of

the Fourier transforms of the unblurred photo and the point spread function.

Now it is clear how we deblur our picture. We take the blurred picture and Fourier transform it to

get b̃k = L ãkf̃k. We also take the point spread function and Fourier transform it to get f̃k. Then we

divide one by the other:
b̃k

Lf̃k
= ãk

which gives us the Fourier transform of the unblurred picture. Then, finally, we do an inverse Fourier

transform on ãk to get back the unblurred picture. This process of recovering the unblurred picture from

the blurred one, of reversing the convolution process, is called deconvolution.

Real pictures are two-dimensional, but the mathematics follows through exactly the same. For a

picture of dimensions K × L we find that the two-dimensional Fourier transforms are related by

b̃kl = KLãklf̃kl ,

5

and again we just divide the blurred Fourier transform by the Fourier transform of the point spread

function to get the Fourier transform of the unblurred picture.

In the digital realm of computers, pictures are not pure functions f(x, y) but rather grids of samples,

and our Fourier transforms are discrete transforms not continuous ones. But the math works out the

same again.

The main complication with deblurring in practice is that we don’t usually know the point spread

function. Typically we have to experiment with different ones until we find something that works. For

many cameras it’s a reasonable approximation to assume the point spread function is Gaussian:

f(x, y) = exp

(
−x

2 + y2

2σ2

)
,

where σ is the width of the Gaussian. Even with this assumption, however, we still don’t know the

value of σ and we may have to experiment to find a value that works well. In the following exercise, for

simplicity, we’ll assume we know the value of σ.

a) On the web site you will find a file called blur.txt that contains a grid of values representing

brightness on a black-and-white photo—a badly out-of-focus one that has been deliberately blurred

using a Gaussian point spread function of width σ = 25. Write a program that reads the grid of

values into a two-dimensional array of real numbers and then draws the values on the screen of the

computer as a density plot. You should see the photo appear. If you get something wrong it might

be upside-down. Work with the details of your program until you get it appearing correctly. (Hint:

The picture has the sky, which is bright, at the top and the ground, which is dark, at the bottom.)

b) Write another program that creates an array, of the same size as the photo, containing a grid of

samples drawn from the Gaussian f(x, y) above with σ = 25. Make a density plot of these values

on the screen too, so that you get a visualization of your point spread function. Remember that

the point spread function is periodic (along both axes), which means that the values for negative

x and y are repeated at the end of the interval. Since the Gaussian is centered on the origin, this

means there should be bright patches in each of the four corners of your picture, something like

this:

c) Combine your two programs and add Fourier transforms using the functions rfft2 and irfft2

from numpy.fft, to make a program that does the following:

i) Reads in the blurred photo

ii) Calculates the point spread function

iii) Fourier transforms both

6

iv) Divides one by the other

v) Performs an inverse transform to get the unblurred photo

vi) Displays the unblurred photo on the screen

When you are done, you should be able to make out the scene in the photo, although probably it

will still not be perfectly sharp.

Hint: One thing you’ll need to deal with is what happens when the Fourier transform of the point

spread function is zero, or close to zero. In that case if you divide by it you’ll get an error (because

you can’t divide by zero) or just a very large number (because you’re dividing by something small).

A workable compromise is that if a value in the Fourier transform of the point spread function is

smaller than a certain amount ε you don’t divide by it—just leave that coefficient alone. The value

of ε is not very critical but a reasonable value seems to be 10−3.

d) Bearing in mind this last point about zeros in the Fourier transform, what is it that limits our

ability to deblur a photo? Why can we not perfectly unblur any photo and make it completely

sharp?

We have seen this process in action here for a normal snapshot, but it is also used in many physics

applications where one takes photos. For instance, it is used in astronomy to enhance photos taken by

telescopes. It was famously used with images from the Hubble Space Telescope after it was realized that

the telescope’s main mirror had a serious manufacturing flaw and was returning blurry photos—scientists

managed to partially correct the blurring using Fourier transform techniques.

7

