
PHYS 7411 Spring 2015

Computational Physics

Homework 3

Due by 3:00pm in Nicholson 447 on 13 March 2015, Friday the 13th

Exercise 1: The Stefan–Boltzmann constant

The Planck theory of thermal radiation tells us that in the (angular) frequency interval ω to ω + dω, a

black body of unit area radiates electromagnetically an amount of thermal energy per second equal to

I(ω) dω, where

I(ω) =
h̄

4π2c2

ω3

(eh̄ω/kBT − 1)
.

Here h̄ is Planck’s constant over 2π, c is the speed of light, and kB is Boltzmann’s constant.

a) Show that the total energy per unit area radiated by a black body is

W =
k4
BT

4

4π2c2h̄3

∫ ∞
0

x3

ex − 1
dx.

b) Write a program to evaluate the integral in this expression. Explain what method you used, and

how accurate you think your answer is.

c) Even before Planck gave his theory of thermal radiation around the turn of the 20th century, it was

known that the total energy W given off by a black body per unit area per second followed Stefan’s

law: W = σT 4, where σ is the Stefan–Boltzmann constant. Use your value for the integral above to

compute a value for the Stefan–Boltzmann constant (in SI units) to three significant figures. Check

your result against the known value, which you can find in books or on-line. You should get good

agreement.

Exercise 2: Gravitational pull of a uniform sheet

A uniform square sheet of metal is floating motionless in space:

z

y

x

1kg point mass

10m

The sheet is 10 m on a side and of negligible thickness, and it has a mass of 10 metric tonnes.

1

a) Consider the gravitational force due to the plate felt by a point mass of 1 kg a distance z from the

center of the square, in the direction perpendicular to the sheet, as shown above. Show that the

component of the force along the z-axis is

Fz = Gσz

∫∫ L/2

−L/2

dx dy

(x2 + y2 + z2)3/2
,

where G = 6.674× 10−11 m3 kg−1 s−2 is Newton’s gravitational constant and σ is the mass per unit

area of the sheet.

b) Write a program to calculate and plot the force as a function of z from z = 0 to z = 10 m. For the

double integral use (double) Gaussian quadrature, as in Eq. (5.82), with 100 sample points along

each axis.

c) You should see a smooth curve, except at very small values of z, where the force should drop

off suddenly to zero. This drop is not a real effect, but an artifact of the way we have done the

calculation. Explain briefly where this artifact comes from and suggest a strategy to remove it, or

at least to decrease its size.

This calculation can thought of as a model for the gravitational pull of a galaxy. Most of the mass in

a spiral galaxy (such as our own Milky Way) lies in a thin plane or disk passing through the galactic

center, and the gravitational pull exerted by that plane on bodies outside the galaxy can be calculated

by just the methods we have employed here.

Exercise 3: Create a user-defined function f(x) that returns the value 1 + 1
2 tanh 2x, then use a central

difference to calculate the derivative of the function in the range −2 ≤ x ≤ 2. Calculate an analytic

formula for the derivative and make a graph with your numerical result and the analytic answer on the

same plot. It may help to plot the exact answer as lines and the numerical one as dots. (Hint: In Python

the tanh function is found in the math package, and it’s called simply tanh.)

Exercise 4: The gamma function

A commonly occurring function in physics calculations is the gamma function Γ(a), which is defined by

the integral

Γ(a) =

∫ ∞
0

xa−1e−x dx.

There is no closed-form expression for the gamma function, but one can calculate its value for given a by

performing the integral above numerically. You have to be careful how you do it, however, if you wish to

get an accurate answer.

a) Write a program to make a graph of the value of the integrand xa−1e−x as a function of x from

x = 0 to x = 5, with three separate curves for a = 2, 3, and 4, all on the same axes. You should

find that the integrand starts at zero, rises to a maximum, and then decays again for each curve.

b) Show analytically that the maximum falls at x = a− 1.

c) Most of the area under the integrand falls near the maximum, so to get an accurate value of the

gamma function we need to do a good job of this part of the integral. We can change the integral

from 0 to ∞ to one over a finite range from 0 to 1 using the change of variables in Eq. (5.67), but

this tends to squash the peak towards the edge of the [0, 1] range and does a poor job of evaluating

the integral accurately. We can do a better job by making a different change of variables that puts

2

the peak in the middle of the integration range, around 1
2 . We will use the change of variables given

in Eq. (5.69), which we repeat here for convenience:

z =
x

c+ x
.

For what value of x does this change of variables give z = 1
2? Hence what is the appropriate choice

of the parameter c that puts the peak of the integrand for the gamma function at z = 1
2?

d) Before we can calculate the gamma function, there is another detail we need to attend to. The

integrand xa−1e−x can be difficult to evaluate because the factor xa−1 can become very large and

the factor e−x very small, causing numerical overflow or underflow, or both, for some values of x.

Write xa−1 = e(a−1) lnx to derive an alternative expression for the integrand that does not suffer

from these problems (or at least not so much). Explain why your new expression is better than the

old one.

e) Now, using the change of variables above and the value of c you have chosen, write a user-defined

function gamma(a) to calculate the gamma function for arbitrary argument a. Use whatever inte-

gration method you feel is appropriate. Test your function by using it to calculate and print the

value of Γ(3
2), which is known to be equal to 1

2

√
π ' 0.886.

f) For integer values of a it can be shown that Γ(a) is equal to the factorial of a − 1. Use your

Python function to calculate Γ(3), Γ(6), and Γ(10). You should get answers closely equal to 2! = 2,

5! = 120, and 9! = 362 880.

Exercise 5: Electric field of a charge distribution

Suppose we have a distribution of charges and we want to calculate the resulting electric field. One way

to do this is to first calculate the electric potential φ and then take its gradient. For a point charge q at

the origin, the electric potential at a distance r from the origin is φ = q/4πε0r and the electric field is

E = −∇φ.

a) You have two charges, of ±1 C, 10 cm apart. Calculate the resulting electric potential on a 1 m×1 m

square plane surrounding the charges and passing through them. Calculate the potential at 1 cm

spaced points in a grid and make a visualization on the screen of the potential using a density plot.

b) Now calculate the partial derivatives of the potential with respect to x and y and hence find the

electric field in the xy plane. Make a visualization of the field also. This is a little trickier than

visualizing the potential, because the electric field has both magnitude and direction. One way to

do it might be to make two density plots, one for the magnitude, and one for the direction, the

latter using the “hsv” color scheme in pylab, which is a rainbow scheme that passes through all

the colors but starts and ends with the same shade of red, which makes it suitable for representing

things like directions or angles that go around the full circle and end up where they started. A

more sophisticated visualization might use the arrow object from the visual package, drawing a

grid of arrows with direction and length chosen to represent the field.

c) Now suppose you have a continuous distribution of charge over an L×L square. The charge density

in Cm−2 is

σ(x, y) = q0 sin
2πx

L
sin

2πy

L
.

Calculate and visualize the resulting electric field at 1 cm-spaced points in 1 square meter of the

xy plane for the case where L = 10 cm, the charge distribution is centered in the middle of the

visualized area, and q0 = 100 Cm−2. You will have to perform a double integral over x and y,

3

then differentiate the potential with respect to position to get the electric field. Choose whatever

integration method seems appropriate for the integrals.

Exercise 6:

a) Modify the program gausselim.py in Example 6.1 to incorporate partial pivoting (or you can write

your own program from scratch if you prefer). Run your program and demonstrate that it gives

the same answers as the original program when applied to Eq. (6.1)

b) Modify the program to solve the equations in (6.17) and show that it can find the solution to these

as well, even though Gaussian elimination without pivoting fails.

Exercise 7: The QR algorithm

In this exercise you’ll write a program to calculate the eigenvalues and eigenvectors of a real symmetric

matrix using the QR algorithm. The first challenge is to write a program that finds the QR decomposition

of a matrix. Then we’ll use that decomposition to find the eigenvalues.

As described above, the QR decomposition expresses a real square matrix A in the form A = QR,

where Q is an orthogonal matrix and R is an upper-triangular matrix. Given an N × N matrix A we

can compute the QR decomposition as follows.

Let us think of the matrix as a set of N column vectors a0 . . .aN−1 thus:

A =

 | | | · · ·
a0 a1 a2 · · ·
| | | · · ·

 ,

where we have numbered the vectors in Python fashion, starting from zero, which will be convenient

when writing the program. We now define two new sets of vectors u0 . . .uN−1 and q0 . . .qN−1 as follows:

u0 = a0, q0 =
u0

|u0|
,

u1 = a1 − (q0 · a1)q0, q1 =
u1

|u1|
,

u2 = a2 − (q0 · a2)q0 − (q1 · a2)q1, q2 =
u2

|u2|
,

and so forth. The general formulas for calculating ui and qi are

ui = ai −
i−1∑
j=0

(qj · ai)qj , qi =
ui

|ui|
.

a) Show, by induction or otherwise, that the vectors qi are orthonormal, i.e., that they satisfy

qi · qj =

{
1 if i = j,

0 if i 6= j.

Now, rearranging the definitions of the vectors, we have

a0 = |u0|q0,

a1 = |u1|q1 + (q0 · a1)q0,

a2 = |u2|q2 + (q0 · a2)q0 + (q1 · a2)q1,

4

and so on. Or we can group the vectors qi together as the columns of a matrix and write all of these

equations as a single matrix equation

A =

 | | | · · ·
a0 a1 a2 · · ·
| | | · · ·

 =

 | | | · · ·
q0 q1 q2 · · ·
| | | · · ·

|u0| q0 · a1 q0 · a2 · · ·
0 |u1| q1 · a2 · · ·
0 0 |u2| · · ·

 .

(If this looks complicated it’s worth multiplying out the matrices on the right to verify for yourself that

you get the correct expressions for the ai.)

Notice now that the first matrix on the right-hand side of this equation, the matrix with columns qi,

is orthogonal, because the vectors qi are orthonormal, and the second matrix is upper triangular. In

other words, we have found the QR decomposition A = QR. The matrices Q and R are

Q =

 | | | · · ·
q0 q1 q2 · · ·
| | | · · ·

 , R =

|u0| q0 · a1 q0 · a2 · · ·
0 |u1| q1 · a2 · · ·
0 0 |u2| · · ·

 .

b) Write a Python function that takes as its argument a real square matrix A and returns the two

matrices Q and R that form its QR decomposition. As a test case, try out your function on the

matrix

A =

1 4 8 4

4 2 3 7

8 3 6 9

4 7 9 2

 .

Check the results by multiplying Q and R together to recover the original matrix A again.

c) Using your function, write a complete program to calculate the eigenvalues and eigenvectors of a

real symmetric matrix using the QR algorithm. Continue the calculation until the magnitude of

every off-diagonal element of the matrix is smaller than 10−6. Test your program on the example

matrix above. You should find that the eigenvalues are 1, 21, −3, and −8.

5

