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1 Overview

In the last lecture, we showed how the protocol for entanglement-assisted classical communication
generates a whole family of protocols in quantum Shannon theory.

In this lecture, we discuss communication trade-offs in quantum Shannon theory.

2 Trade-off Coding

Suppose that you are a communication engineer working at a quantum communication company
named EA-USA. Suppose further that your company has made quite a profit from entanglement-
assisted classical communication, beating out the communication rates that other companies can
achieve simply because your company has been able to generate high-quality noiseless entanglement
between several nodes in its network, while the competitors have not been able to do so. But
now suppose that your customer base has become so large that there is not enough entanglement
to support protocols that achieve the rates given in the entanglement-assisted classical capacity
theorem. Your boss would like you to make the best of this situation, by determining the optimal
rates of classical communication for a fixed entanglement budget. He is hoping that you will be
able to design a protocol such that there will only be a slight decrease in communication rates. You
tell him that you will do your best.

What should you do in this situation? Your first thought might be that we have already determined
unassisted classical codes with a communication rate equal to the channel Holevo information χ(N )
and we have also determined entanglement-assisted codes with a communication rate equal to the
channel mutual information I(N ). It might seem that a reasonable strategy is to mix these two
strategies, using some fraction λ of the channel uses for the unassisted classical code and the other
fraction 1−λ of the channel uses for the entanglement-assisted code. This strategy achieves a rate
of

λχ(N ) + (1− λ) I(N ), (1)

and it has an error no larger than the sum of the errors of the individual codes (thus, this error
vanishes asymptotically). Meanwhile, it consumes entanglement at a lower rate of (1− λ)E ebits
per channel use, if E is the amount of entanglement that the original protocol for entanglement-
assisted classical communication consumes. This simple mixing strategy is known as time sharing.
You figure this strategy might perform well, and you suggest it to your boss. After your boss
reviews your proposal, he sends it back to you, telling you that he already thought of this solution
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and suggests that you are going to have to be a bit more clever—otherwise, he suspects that the
existing customer base will notice the drop in communication rates.

Another strategy for communication is known as trade-off coding. We explore this strategy in the
forthcoming section. Trade-off coding beats time sharing for many channels of interest, but for
other channels, it just reduces to time sharing. It is not clear a priori how to determine which
channels benefit from trade-off coding, but it certainly depends on the channel for which Alice and
Bob are coding. The book follows up on the development here by demonstrating that this trade-off
coding strategy is provably optimal for certain channels, and for general channels, it is optimal in
the sense of regularized formulas. Trade-off coding is our best known way to deal with the above
situation with a fixed entanglement budget, and your boss should be pleased with these results.
Furthermore, we can upgrade the protocol outlined below to one that achieves entanglement-assisted
communication of both classical and quantum information.

2.1 Trading between Unassisted and Assisted Classical Communication

We first show that the resource inequality given in the following theorem is achievable, and we follow
up with an interpretation of it in the context of trade-off coding. We name the protocol CE trade-
off coding because it captures the trade-off between classical communication and entanglement
consumption.

Theorem 1 (CE Trade-off Coding). The following resource inequality corresponds to an achievable
protocol for entanglement-assisted classical communication over a noisy quantum channel:

〈N〉+H(A|X)ρ [qq] ≥ I(AX;B)ρ [c→ c] , (2)

where ρXAB is a state of the following form:

ρXAB ≡
∑
x

pX(x)|x〉〈x|X ⊗NA′→B(ϕxAA′), (3)

and the states ϕxAA′ are pure.

Proof. The proof of the above trade-off coding theorem exploits the direct parts of both the HSW
coding theorem and the entanglement-assisted classical capacity theorem. In particular, we exploit
the fact that the HSW codewords arise from strongly typical sequences and that the entanglement-
assisted quantum codewords from are tensor power states after tracing over Bob’s shares of the
entanglement. Suppose that Alice and Bob exploit an HSW code for the channel NA′→B. Such
a code consists of a codebook

{
ρx

n(m)
}
m

with ≈ 2nI(X;B)ρ quantum codewords. The Holevo
information I(X;B)ρ is with respect to some classical–quantum state ρXB where

ρXB ≡
∑
x

pX(x)|x〉〈x|X ⊗NA′→B(ρxA′), (4)

and each codeword ρx
n(m) is a tensor-product state of the form

ρxn(m) = ρx1(m) ⊗ ρx2(m) ⊗ · · · ⊗ ρxn(m). (5)

Corresponding to the codebook is some decoding POVM {ΛmBn}, which Bob can employ to decode
each codeword transmitted through the channel with arbitrarily high probability for all ε > 0:

∀m Tr
{

ΛmBnNA′n→Bn(ρ
xn(m)
A′n )

}
≥ 1− ε. (6)
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Recall from the direct part of the HSW theorem that we select each codeword from the set of
strongly typical sequences for the distribution pX(x). This implies that each classical codeword
xn(m) has approximately npX(a1) occurrences of the symbol a1 ∈ X , npX(a2) occurrences of the
symbol a2 ∈ X , and so on, for all letters in the alphabet X . Without loss of generality and
for simplicity, we assume that each codeword xn(m) has exactly these numbers of occurrences of
the symbols in the alphabet X . Then for any strongly typical sequence xn, there exists some
permutation π that arranges it in lexicographical order according to the alphabet X . That is, this
permutation arranges the sequence xn into |X | blocks, each of length npX(a1), . . . , npX(a|X |):

π(xn) = a1 · · · a1︸ ︷︷ ︸
npX(a1)

a2 · · · a2︸ ︷︷ ︸
npX(a2)

· · · a|X | · · · a|X |︸ ︷︷ ︸
npX(a|X|)

. (7)

The same holds true for the corresponding permutation operator π applied to a quantum state ρx
n

generated from a strongly typical sequence xn:

π(ρx
n
) = ρa1 ⊗ · · · ⊗ ρa1︸ ︷︷ ︸

npX(a1)

⊗ ρa2 ⊗ · · · ⊗ ρa2︸ ︷︷ ︸
npX(a2)

⊗ · · · ⊗ ρa|X| ⊗ · · · ⊗ ρa|X|︸ ︷︷ ︸
npX(a|X|)

. (8)

Now, we assume that n is quite large, so large that each of npX(a1), . . . , npX(a|X |) are large enough
for the law of large numbers to come into play for each block in the permuted sequence π(xn) and
tensor-product state π(ρx

n
). Let ϕxAA′ be a purification of each ρxA′ in the ensemble

{
pX(x), ρxA′

}
,

where we assume that Alice has access to system A′ and Bob has access to A. Then, for every

HSW quantum codeword ρ
xn(m)
A′n , there is some purification ϕ

xn(m)
AnA′n , where

ϕ
xn(m)
AnA′n ≡ ϕx1(m)

A1A′
1
⊗ ϕx2(m)

A2A′
2
⊗ · · · ⊗ ϕxn(m)

AnA′
n
, (9)

Alice has access to the systems A′n ≡ A′1 · · ·A′n, and Bob has access to An ≡ A1 · · ·An. Applying
the permutation π to any purified tensor-product state ϕx

n
gives

π
(
ϕx

n)
= ϕa1 ⊗ · · · ⊗ ϕa1︸ ︷︷ ︸

npX(a1)

⊗ϕa2 ⊗ · · · ⊗ ϕa2︸ ︷︷ ︸
npX(a2)

⊗ · · · ⊗ ϕa|X| ⊗ · · · ⊗ ϕa|X|︸ ︷︷ ︸
npX(a|X|)

, (10)

where we have assumed that the permutation applies on both the purification systems An and the
systems A′n. We can now formulate a strategy for trade-off coding. Alice begins with a standard
classical sequence x̂n that is in lexicographical order, having exactly npX (ai) occurrences of the
symbol ai ∈ X (of the form in (7)). According to this sequence, she arranges the states {ϕaiAA′}
to be in |X | blocks, each of length npX(ai)—the resulting state is of the same form as in (10).
Since npX(ai) is large enough for the law of large numbers to come into play, for each block,

there exists an entanglement-assisted classical code with ≈ 2nI(A;B)N (ϕai ) entanglement-assisted
quantum codewords, where the quantum mutual information I(A;B)N (ϕai ) is with respect to the
state NA′→B(ϕaiAA′). Let ni ≡ npX(ai). Then each of these |X | entanglement-assisted classical
codes consumes niH(A)ϕaiA

ebits. The entanglement-assisted quantum codewords for each block

are of the form
UAni (s(li))(ϕ

ai
AniA′ni )U

†
Ani (s(li)), (11)

where li is a message in the message set of size ≈ 2nI(A;B)ϕai , the state ϕai
AniA′ni = ϕai

A1A′
1
⊗ · · · ⊗

ϕaiAniA′
ni

, and the unitaries UAni (s(li)) are of the form from the entanglement-assisted classical

capacity theorem. Observe that the codewords in (11) are all equal to ρai
A′ni after tracing over
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Bob’s systems Ani , regardless of the particular unitary that Alice applies. Alice then determines
the permutation πm needed to permute the standard sequence x̂n to a codeword sequence xn(m),
and she applies the permutation operator πm to her systems A′n so that her channel input density

operator is the HSW quantum codeword ρ
xn(m)
A′n (we are tracing over Bob’s systems An and applying

the aforementioned observation to obtain this result). She transmits her systems A′n over the
channel to Bob. If Bob ignores his share of the entanglement in An, the state that he receives from

the channel is NA′n→Bn(ρ
xn(m)
A′n ). He then applies his HSW measurement {ΛmBn} to the systems

Bn received from the channel, and he determines the sequence xn(m), and hence the message m,
with nearly unit probability. Also, this measurement has negligible disturbance on the state, so
that the post-measurement state is 2

√
ε-close in trace distance to the state that Alice transmitted

through the channel (in what follows, we assume that the measurement does not change the state,
and we collect error terms at the end of the proof). Now that he knows m, he applies the inverse
permutation operator π−1

m to his systems Bn, and we are assuming that he already has his share
An of the entanglement arranged in lexicographical order according to the standard sequence x̂n.
His state is then as follows:

|X |⊗
i=1

UAni (s(li))
(
ϕa1An1A′n1

)
U †Ani (s(li)). (12)

At this point, he can decode the message li in the ith block by performing a collective measurement
on the systems AniA′ni . He does this for each of the |X | entanglement-assisted classical codes, and
this completes the protocol for trade-off coding. The total error accumulated in this protocol
is no larger than the sum of ε for the first measurement, 2

√
ε for the disturbance of the state,

and |X | ε for the error from the final measurement of the |X | blocks. The proof here assumes
that every classical codeword xn(m) has exactly npX(ai) occurrences of symbol ai ∈ X , but it is
straightforward to modify the above protocol to allow for imprecision, i.e., if the codewords are
δ-strongly typical. Figure 1 depicts this protocol for an example. We now show how the total
rate of classical communication adds up to I(AX;B)ρ where ρXAB is a state of the form in (3).
First, we can apply the chain rule for quantum mutual information to observe that the total rate
I(AX;B)ρ is the sum of a Holevo information I(X;B)ρ and a classically conditioned quantum
mutual information I(A;B|X)ρ:

I(AX;B)ρ = I(X;B)ρ + I(A;B|X)ρ. (13)

They achieve the rate I(X;B)ρ because Bob first reliably decodes the HSW quantum codeword,
of which there can be ≈ 2nI(X;B). His next step is to permute and decode the |X | blocks, each
consisting of an entanglement-assisted classical code on ≈ npX(x) channel uses. Each entanglement-
assisted classical code can communicate npX(x)I(A;B)ρx bits while consuming npX(x)H(A) ebits.
Thus, the total rate of classical communication for this last part is

# of bits generated

# of channel uses
≈
∑

x n pX(x)I(A;B)ρx∑
x n pX(x)

(14)

=
∑
x

pX(x)I(A;B)ρx (15)

= I(A;B|X)ρ, (16)
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Figure 1: A simple protocol for trade-off coding between assisted and unassisted classical commu-
nication. Alice wishes to send the classical message m while also sending the messages l1, l2, and l3.
Her HSW codebook has the message m map to the sequence 1231213, which in turn gives the HSW
quantum codeword ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ ρ1 ⊗ ρ2 ⊗ ρ1 ⊗ ρ3. A purification of these states is the following
tensor product of pure states: ϕ1 ⊗ ϕ2 ⊗ ϕ3 ⊗ ϕ1 ⊗ ϕ2 ⊗ ϕ1 ⊗ ϕ3, where Bob possesses the purifi-
cation of each state in the tensor product. She begins with these states arranged in lexicographic
order in three blocks (there are three letters in this alphabet). For each block i, she encodes the
message li with the local unitaries for an entanglement-assisted classical code. She then permutes
her shares of the entangled states according to the permutation associated with the message m.
She inputs her systems to many uses of the channel, and Bob receives the outputs. His first action
is to ignore his shares of the entanglement and perform a collective HSW measurement on all of the
channel outputs. With high probability, he can determine the message m while causing a negligible
disturbance to the state of the channel outputs. Based on the message m, he performs the inverse
of the permutation that Alice used at the encoder. He combines his shares of the entanglement
with the permuted channel outputs. His final three measurements are those given by the three
entanglement-assisted codes Alice used at the encoder, and they detect the messages l1, l2, and l3
with high probability.
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and similarly, the total rate of entanglement consumption is

# of ebit consumed

# of channel uses
≈
∑

x n pX(x)H(A)ρx∑
x n pX(x)

(17)

=
∑
x

pX(x)H(A)ρx (18)

= H(A|X)ρ. (19)

This gives the resource inequality in the statement of the theorem.

2.2 Trading between Coherent and Classical Communication

We obtain the following corollary of Theorem 1, simply by upgrading the |X | entanglement-assisted
classical codes to entanglement-assisted coherent codes. The upgrading is along the same lines as
that which we did before, and for this reason, we omit the proof.

Corollary 2. The following resource inequality corresponds to an achievable protocol for entanglement-
assisted coherent communication over a noisy quantum channel N :

〈N〉+H(A|X)ρ [qq] ≥ I(A;B|X)ρ [q → qq] + I(X;B)ρ [c→ c] , (20)

where ρXAB is a state of the following form:

ρXAB ≡
∑
x

pX(x)|x〉〈x|X ⊗NA′→B(ϕxAA′), (21)

and the states ϕxAA′ are pure.

2.3 Trading between Classical Communication and Entanglement-Assisted Quan-
tum Communication

We end this section with a protocol that achieves entanglement-assisted communication of both
classical and quantum information. It is essential to the trade-off between a noisy quantum channel
and the three resources of noiseless classical communication, noiseless quantum communication,
and noiseless entanglement. We study this trade-off in full detail in the book, where we show that
combining this protocol with teleportation, super-dense coding, and entanglement distribution
is sufficient to achieve any task in dynamic quantum Shannon theory involving the three unit
resources.

Corollary 3 (CQE Trade-off Coding). The following resource inequality corresponds to an achiev-
able protocol for entanglement-assisted communication of classical and quantum information over
a noisy quantum channel:

〈N〉+
1

2
I(A;E|X)ρ [qq] ≥ 1

2
I(A;B|X)ρ [q → q] + I(X;B)ρ [c→ c] , (22)

where ρXAB is a state of the following form:

ρXABE ≡
∑
x

pX(x)|x〉〈x|X ⊗ UNA′→BE(ϕxAA′), (23)

the states ϕxAA′ are pure, and UNA′→BE is an isometric extension of the channel NA′→B.
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Proof. Consider the following chain of resource inequalities:

〈N〉+H(A|X)ρ [qq]

≥ I(A;B|X)ρ [q → qq] + I(X;B)ρ [c→ c] (24)

≥ 1

2
I(A;B|X)ρ [qq] +

1

2
I(A;B|X)ρ [q → q] + I(X;B)ρ [c→ c] . (25)

The first inequality is the statement in Corollary 2, and the second inequality follows from the coher-
ent communication identity. After resource cancelation and noting that H(A|X)ρ− 1

2I(A;B|X)ρ =
1
2I(A;E|X)ρ, the resulting resource inequality is equivalent to the one in (22).

2.4 Trading between Classical and Quantum Communication

Our final trade-off coding protocol that we consider is that between classical and quantum commu-
nication. The proof of the below resource inequality follows by combining the protocol in Corollary 3
with entanglement distribution. Thus, we omit the proof.

Corollary 4 (CQ Trade-off Coding). The following resource inequality corresponds to an achievable
protocol for simultaneous classical and quantum communication over a noisy quantum channel:

〈N〉 ≥ I(A〉BX)ρ [q → q] + I(X;B)ρ [c→ c] , (26)

where ρXAB is a state of the following form:

ρXAB ≡
∑
x

pX(x)|x〉〈x|X ⊗NA′→B(ϕxAA′), (27)

and the states ϕxAA′ are pure.

This chapter unifies all of the channel coding theorems that we have studied in this book. One of the
most general information-processing tasks that a sender and receiver can accomplish is to transmit
classical and quantum information and generate entanglement with many independent uses of a
quantum channel and with the assistance of classical communication, quantum communication, and
shared entanglement.1 The resulting rates for communication are net rates that give the generation
rate of a resource less its consumption rate. Since we have three resources, all achievable rates are
rate triples (C,Q,E) that lie in a three-dimensional capacity region, where C is the net rate of
classical communication, Q is the net rate of quantum communication, and E is the net rate of
entanglement consumption/generation. The capacity theorem for this general scenario is known as
the quantum dynamic capacity theorem, and it is the main theorem that we prove in this chapter.
All of the rates given in the channel coding theorems of previous chapters are special points in this
three-dimensional capacity region.

The proof of the quantum dynamic capacity theorem comes in two parts: the direct coding theorem
and the converse theorem. The direct coding theorem demonstrates that the strategy for achieving
any point in the three-dimensional capacity region is remarkably simple: we just combine the
protocol from Corollary 3 for entanglement-assisted classical and quantum communication with
the three unit protocols of teleportation, super-dense coding, and entanglement distribution. The

1Recall that the book addressed a special case of this information processing task that applies to the scenario in
which the sender and receiver do not have access to many independent uses of a noisy quantum channel.

7



interpretation of the achievable rate region is that it is the unit resource capacity region from the
book translated along the points achievable with the protocol from Corollary 3. The proof of the
converse theorem is perhaps the more difficult part—we analyze the most general protocol that
can consume and generate classical communication, quantum communication, and entanglement
along with the consumption of many independent uses of a quantum channel, and we show that
the net rates for such a protocol are bounded by the achievable rate region. In the general case, our
characterization is multi-letter, meaning that the computation of the capacity region requires an
optimization over a potentially infinite number of channel uses and is thus intractable. However,
the quantum Hadamard channels are a special class of channels for which the regularization is
not necessary, and we can compute their capacity regions over a single instance of the channel.
Another important class of channels for which the capacity region is known is the class of lossy
bosonic channels (though the optimality proof is only up to a long-standing conjecture which many
researchers believe to be true). These lossy bosonic channels model free-space communication or
loss in a fiber optic cable and thus have an elevated impetus for study because of their importance
in practical applications.

One of the most important questions for communication in this three-dimensional setting is whether
it is really necessary to exploit the trade-off coding strategy given in Corollary 3. That is, would it
be best simply to use a classical communication code for a fraction of the channel uses, a quantum
communication code for another fraction, an entanglement-assisted code for another fraction, etc.?
Such a strategy is known as time sharing and allows the sender and receiver to achieve convex
combinations of any rate triples in the capacity region. The answer to this question depends on
the channel. For example, time sharing is optimal for the quantum erasure channel, but it is not
for a dephasing channel or a lossy bosonic channel. In fact, trade-off coding for a lossy bosonic
channel can give tremendous performance gains over time sharing. How can we know which one
will perform better in the general case? It is hard to say, but at the very least, we know that time
sharing is a special case of trade-off coding as we argued in the book. Thus, from this perspective,
it might make sense simply to always use a trade-off strategy.

We organize this chapter as follows. We first review the information-processing task corresponding
to the quantum dynamic capacity region. Section 4 states the quantum dynamic capacity theorem
and shows how many of the capacity theorems we studied previously arise as special cases of it. The
next two sections prove the direct coding theorem and the converse theorem. The book introduces
the quantum dynamic capacity formula, which is important for analyzing whether the quantum
dynamic capacity region is single-letter. In the final section of this chapter, we compute and plot
the quantum dynamic capacity region for the dephasing channels and the lossy bosonic channels.

3 The Information-Processing Task

Figure 2 depicts the most general protocol for generating classical communication, quantum com-
munication, and entanglement with the consumption of a noisy quantum channel NA′→B and the
same respective resources. Alice possesses two classical registers (each labeled by M and of di-
mension 2nC̄), a quantum register A1 of dimension 2nQ̄ entangled with a reference system R, and

another quantum register TA of dimension 2nẼ that contains her share of the shared entanglement
with Bob:

ωMMRA1TATB ≡ ΦMM ⊗ ΦRA1 ⊗ ΦTATB . (28)
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Figure 2: The most general protocol for generating classical communication, quantum communica-
tion, and entanglement generation with the help of the same respective resources and many uses of
a noisy quantum channel. Alice begins with her classical register M , her quantum register A1, and
her half of the shared entanglement in register TA. She encodes according to some CPTP map E
that outputs a quantum register SA, many registers A′n, a quantum register A2, and a classical
register L. She inputs A′n to many uses of the noisy channel N and transmits A2 over a noiseless
quantum channel and L over a noiseless classical channel. Bob receives the channel outputs Bn,
the quantum register A2, and the classical register L and performs a decoding D that recovers
the quantum information and classical message. The decoding also generates entanglement with
system SA. Many protocols are a special case of the above one. For example, the protocol is
entanglement-assisted communication of classical and quantum information if the registers L, SA,
SB, and A2 are null.

9



She passes one of the classical registers and the registers A1 and TA into a CPTP encoding map
EMA1TA→A′nSALA2 that outputs a quantum register SA of dimension 2nĒ and a quantum register

A2 of dimension 2nQ̃, a classical register L of dimension 2nC̃ , and many quantum systems A′n for
input to the channel. The register SA is for creating entanglement with Bob. The state after the
encoding map E is as follows:

ωMA′nSALA2RTB ≡ EMA1TA→A′nSALA2(ωMMRA1TATB ). (29)

She sends the systems A′n through many uses NA′n→Bn of the noisy channel NA′→B, transmits L
over a noiseless classical channel, and transmits A2 over a noiseless quantum channel, producing
the following state:

ωMBnSALA2RTB ≡ NA′n→Bn(ωMA′nSALA2RTB ). (30)

The above state is a state of the following form:∑
x

pX(x)|x〉〈x|X ⊗NA′n→Bn(ρxAA′n), (31)

with A ≡ RTBA2SA and X ≡ ML. Bob then applies a map DBnA2TBL→B1SBM̂
that outputs a

quantum system B1, a quantum system SB, and a classical register M̂ . Let ω′ denote the final
state. The following condition holds for a good protocol:∥∥∥ΦMM̂ ⊗ ΦRB1 ⊗ ΦSASB − ω

′
MB1SBM̂SAR

∥∥∥
1
≤ ε, (32)

implying that Alice and Bob establish maximal classical correlations in M and M̂ and maximal en-
tanglement between SA and SB. The above condition also implies that the coding scheme preserves
the entanglement with the reference system R. The net rate triple for the protocol is as follows:(
C̄ − C̃ − δ, Q̄− Q̃− δ, Ē − Ẽ − δ

)
for some arbitrarily small δ > 0. The protocol generates a

resource if its corresponding rate is positive, and it consumes a resource if its corresponding rate
is negative. We say that a rate triple (C,Q,E) is achievable if there exists a protocol of the above
form for all δ, ε > 0 and sufficiently large n.

4 The Quantum Dynamic Capacity Theorem

The dynamic capacity theorem gives bounds on the reliable communication rates of a noisy quan-
tum channel when combined with the noiseless resources of classical communication, quantum
communication, and shared entanglement. The theorem applies regardless of whether a protocol
consumes the noiseless resources or generates them.

Theorem 5 (Quantum Dynamic Capacity). The dynamic capacity region CCQE(N ) of a quantum
channel N is equal to the following expression:

CCQE(N ) =

∞⋃
k=1

1

k
C(1)

CQE(N⊗k), (33)

where the overbar indicates the closure of a set. The region C(1)
CQE(N ) is the union of the state-

dependent regions C(1)
CQE,σ(N ):

C(1)
CQE(N ) ≡

⋃
σ

C(1)
CQE,σ(N ). (34)

10



The state-dependent region C(1)
CQE,σ(N ) is the set of all rates C, Q, and E, such that

C + 2Q ≤ I(AX;B)σ, (35)

Q+ E ≤ I(A〉BX)σ, (36)

C +Q+ E ≤ I(X;B)σ + I(A〉BX)σ. (37)

The above entropic quantities are with respect to a classical–quantum state σXAB where

σXAB ≡
∑
x

pX(x)|x〉〈x|X ⊗NA′→B(φxAA′), (38)

and the states φxAA′ are pure. It is implicit that one should consider states on A′k instead of A′

when taking the regularization in (33).

The above theorem is a “multi-letter” capacity theorem because of the regularization in (33)).
However, we show in the book that the regularization is not necessary for the Hadamard class of
channels. We prove the above theorem in two parts:

1. The direct coding theorem in the book shows that combining the protocol from Corollary 3
with teleportation, super-dense coding, and entanglement distribution achieves the above
region.

2. The converse theorem in Section ?? demonstrates that any coding scheme cannot do better
than the regularization in (33), in the sense that a scheme with vanishing error should have
its rates below the above amounts.

5 The Direct Coding Theorem

The unit resource achievable region is what Alice and Bob can achieve with the protocols en-
tanglement distribution, teleportation, and super-dense coding. It is the cone of the rate triples
corresponding to these protocols:

{α (0,−1, 1) + β (2,−1,−1) + γ (−2, 1,−1) : α, β, γ ≥ 0} . (39)

We can also write any rate triple (C,Q,E) in the unit resource capacity region with a matrix
equation: CQ

E

 =

 0 2 −2
−1 −1 1
1 −1 −1

αβ
γ

 . (40)

The inverse of the above matrix is as follows:−1
2 −1 0

0 −1
2 −1

2
−1

2 −1
2 −1

2

 , (41)

and gives the following set of inequalities for the unit resource achievable region:

C + 2Q ≤ 0, (42)

Q+ E ≤ 0, (43)

C +Q+ E ≤ 0, (44)
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by inverting the matrix equation in (40) and applying the constraints α, β, γ ≥ 0.

Now, let us include the protocol from Corollary 3 for entanglement-assisted communication of
classical and quantum information. Corollary 3 states that we can achieve the following rate triple
by channel coding over a noisy quantum channel NA′→B:(

I(X;B)σ,
1

2
I(A;B|X)σ,−

1

2
I(A;E|X)σ

)
, (45)

for any state σXABE of the form

σXABE ≡
∑
x

pX(x)|x〉〈x|X ⊗ UNA′→BE(φxAA′), (46)

where UNA′→BE is an isometric extension of the quantum channel NA′→B. Specifically, we showed
in Corollary 3 that one can achieve the above rates with vanishing error in the limit of large
blocklength. Thus the achievable rate region is the following translation of the unit resource
achievable region in (40):CQ

E

 =

 0 2 −2
−1 −1 1
1 −1 −1

αβ
γ

+

 I(X;B)σ
1
2I(A;B|X)σ
−1

2I(A;E|X)σ

 . (47)

We can now determine bounds on an achievable rate region that employs the above coding strategy.
We apply the inverse of the matrix in (40) to the left-hand side and right-hand side, giving−1

2 −1 0
0 −1

2 −1
2

−1
2 −1

2 −1
2

CQ
E

−
−1

2 −1 0
0 −1

2 −1
2

−1
2 −1

2 −1
2

 I(X;B)σ
1
2I(A;B|X)σ
−1

2I(A;E|X)σ

 =

αβ
γ

 . (48)

Then using the following identities:

I(X;B)σ + I(A;B|X)σ = I(AX;B)σ, (49)

1

2
I(A;B|X)σ −

1

2
I(A;E|X)σ = I(A〉BX)σ, (50)

and the constraints α, β, γ ≥ 0, we obtain the inequalities in (35)–(37), corresponding exactly to
the state-dependent region in Theorem 5. Taking the union over all possible states σ in (38)) and
taking the regularization gives the full dynamic achievable rate region.

Figure 3 illustrates an example of the general polyhedron specified by (35)–(37), where the channel
is the qubit dephasing channel ρ → (1 − p)ρ + pZρZ with dephasing parameter p = 0.2, and the
input state is

σXAA′ ≡ 1

2
(|0〉〈0|X ⊗ φ0

AA′ + |1〉〈1|X ⊗ φ1
AA′), (51)

where ∣∣φ0
〉
AA′ ≡

√
1/4|00〉AA′ +

√
3/4|11〉AA′ , (52)∣∣φ1

〉
AA′ ≡

√
3/4|00〉AA′ +

√
1/4|11〉AA′ . (53)

The state σXABE resulting from the channel is UNA′→BE(σXAA′) where UNA′→BE is an isometric
extension of the qubit dephasing channel. The figure caption provides a detailed explanation of the

state-dependent region C(1)
CQE,σ (note that Figure 3 displays the state-dependent region and does

not display the full capacity region).
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Figure 3: An example of the state-dependent achievable region C(1)
CQEσ (N ) corresponding to a state

σXABE that arises from a qubit dephasing channel with dephasing parameter p = 0.2. The figure
depicts the octant corresponding to the consumption of entanglement and the generation of classical
and quantum communication. The state input to the channel N is σXAA′ , defined in (51). The plot
features seven achievable corner points of the state-dependent region. We can achieve the convex
hull of these seven points by time sharing any two different coding strategies. We can also achieve
any point above an achievable point by consuming more entanglement than necessary. The seven
achievable points correspond to entanglement-assisted quantum communication (EAQ), the proto-
col from Corollary 4 for classically enhanced quantum communication (CEQ), the protocol from
Theorem 1 for entanglement-assisted classical communication with limited entanglement (EAC),
quantum communication (LSD), combining CEF with entanglement distribution and super-dense
coding (CEF-SD-ED), the protocol from Corollary 3 for entanglement-assisted communication of
classical and quantum information (CEF), and combining CEF with teleportation (CEF-TP). Ob-
serve that we can obtain EAC by combining CEF with super-dense coding, so that the points CEQ,
CEF, EAC, and CEF-SD-ED all lie in plane III. Observe that we can obtain CEQ from CEF by
entanglement distribution and we can obtain LSD from EAQ and EAQ from CEF-TP, both by
entanglement distribution. Thus, the points CEF, CEQ, LSD, EAQ, and CEF-TP all lie in plane
II. Finally, observe that we can obtain all corner points by combining CEF with the unit proto-
cols of teleportation, super-dense coding, and entanglement distribution. The bounds in (35)–(37)
uniquely specify the respective planes I-III. We obtain the full achievable region by taking the union

over all states σ of the state-dependent regions C(1)
σ (N ) and taking the regularization, as outlined in

Theorem 5. The above region is a translation of the unit resource capacity region from Chapter ??
to the protocol for entanglement-assisted communication of classical and quantum information.
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