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1 Overview

In the last lecture, we proved the entanglement-assisted classical capacity theorem.

In this lecture, we discuss how to use this result to recover many protocols in quantum Shannon
theory.

2 Introduction

This chapter demonstrates the power of both coherent communication and the particular protocol
for entanglement-assisted classical coding from the previous chapter. Recall that coherent dense
coding is a version of the dense coding protocol in which the sender and receiver perform all of its
steps coherently.1 Since our protocol for entanglement-assisted classical coding from the previous
chapter is really just a glorified dense coding protocol, the sender and receiver can perform each
of its steps coherently, generating a protocol for entanglement-assisted coherent coding. Then,
by exploiting the fact that two coherent bits are equivalent to a qubit and an ebit, we obtain
a protocol for entanglement-assisted quantum coding that consumes far less entanglement than
a naive strategy would in order to accomplish this task. We next combine this entanglement-
assisted quantum coding protocol with entanglement distribution and obtain a protocol for which
the channel’s coherent information is an achievable rate for quantum communication. This sequence
of steps demonstrates an alternate proof of the direct part of the quantum channel coding theorem,
which is given in the book.

Entanglement-assisted classical communication is one generalization of super-dense coding, in which
the noiseless qubit channel becomes an arbitrary noisy quantum channel while the noiseless ebits
remain noiseless. Another generalization of super-dense coding is a protocol named noisy super-
dense coding, in which the shared entanglement becomes a shared noisy state ρAB and the noiseless
qubit channels remain noiseless. Interestingly, the protocol that we employ in this chapter for
noisy super-dense coding is essentially equivalent to the protocol from the previous chapter for
entanglement-assisted classical communication, with some slight modifications to account for the
different setting. We can also construct a coherent version of noisy super-dense coding, leading
to a protocol that we name coherent state transfer. Coherent state transfer accomplishes not
only the task of generating coherent communication between Alice and Bob, but it also allows
Alice to transfer her share of the state ρAB to Bob. By combining coherent state transfer with

1Performing a protocol coherently means that we replace conditional unitaries with controlled unitaries and mea-
surements with controlled gates.
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both the coherent communication identity and teleportation, we obtain protocols for quantum-
assisted state transfer and classical-assisted state transfer, respectively. The latter protocol gives an
operational interpretation to the quantum conditional entropy H(A|B)ρ—if it is positive, then the
protocol consumes entanglement at the rate H(A|B)ρ, and if it is negative, the protocol generates
entanglement at the rate |H(A|B)ρ|.

3 Entanglement-Assisted Quantum Communication

The entanglement-assisted classical capacity theorem states that the quantum mutual information
of a channel is equal to its capacity for transmitting classical information with the help of shared
entanglement, and the direct coding theorem provides a protocol that achieves the capacity. We
were not much concerned with the rate at which this protocol consumes entanglement, but a direct
calculation reveals that it consumes H(A)ϕ ebits per channel use, where |ϕ〉AB is the bipartite state
that they share before the protocol begins.2

Suppose now that Alice is interested in exploiting the channel and shared entanglement in order to
transmit quantum information to Bob. There is a simple (and as we will see, naive) way that we can
convert the previous protocol to one that transmits quantum information: they can just combine it
with teleportation. This naive strategy requires consuming ebits at an additional rate of 1

2I(A;B)ρ
in order to have enough entanglement to combine with teleportation, where ρAB ≡ NA′→B(ϕAA′).
To see this, consider the following resource inequalities:

〈N〉+

(
H(A)ρ +

1

2
I(A;B)ρ

)
[qq] ≥ I(A;B)ρ [c→ c] +

1

2
I(A;B)ρ [qq] (1)

≥ 1

2
I(A;B)ρ [q → q] . (2)

The first inequality follows by having them exploit the channel and the nH(A)ρ ebits to generate
classical communication at a rate I(A;B)ρ (while doing nothing with the extra n1

2I(A;B)ρ ebits).
Alice then exploits the ebits and the classical communication in a teleportation protocol to send
n1
2I(A;B)ρ qubits to Bob. This rate of quantum communication is provably optimal—were it

not so, it would be possible to combine the protocol in (1)–(2) with super-dense coding and beat
the optimal rate for classical communication given by the entanglement-assisted classical capacity
theorem.

Although the above protocol achieves the entanglement-assisted quantum capacity, we are left
thinking that the entanglement consumption rate of H(A)ρ + 1

2I(A;B)ρ ebits per channel use
might be a bit more than necessary because teleportation and super-dense coding are not dual under
resource reversal. That is, if we combine the protocol with super-dense coding and teleportation ad
infinitum, then it consumes an infinite amount of entanglement. In practice, this “back and forth”
with teleportation and super-dense coding would be a poor way to consume the precious resource
of entanglement.

How might we make more judicious use of shared entanglement? Recall that coherent communi-
cation was helpful for doing so, at least in the noiseless case. A sender and receiver can combine

2This result follows because they can concentrate n copies of the state |ϕ〉AB to nH(A)ϕ ebits, as we learned
before. Also, they can “dilute” nH(A)ϕ ebits to n copies of |ϕ〉AB with the help of a sublinear amount of classical
communication that does not factor into the resource count (we have not studied the protocol for entanglement
dilution).
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coherent teleportation and coherent dense coding ad infinitum without any net loss in entanglement,
essentially because these two protocols are dual under resource reversal. The following theorem
shows how we can upgrade the previous protocol to one that generates coherent communication
instead of just classical communication. The resulting protocol is one way to have a version of
coherent dense coding in which one noiseless resource is replaced by a noisy one.

Theorem 1 (Entanglement-Assisted Coherent Communication). The following resource inequality
corresponds to an achievable protocol for entanglement-assisted coherent communication over a
noisy quantum channel:

〈N〉+H(A)ρ [qq] ≥ I(A;B)ρ [q → qq] , (3)

where ρAB ≡ NA′→B(ϕAA′).

Proof. Suppose that Alice and Bob share many copies of some pure, bipartite entangled state
|ϕ〉AB. Consider the code from the direct coding theorem in the book. We can say that it is a
set of D2 ≈ 2nI(A;B)ρ unitaries U(s(m)), from which Alice can select, and she applies a particular
unitary U(s(m)) to her share An of the entanglement in order to encode message m. Also, Bob
has a detection POVM

{
ΛmB′nBn

}
acting on his share of the entanglement and the channel outputs

that he can exploit to detect message m. Just as we were able to construct a coherent super-
dense coding protocol by performing all the steps in dense coding coherently, we can do so for the
entanglement-assisted classical coding protocol. We track the steps in such a protocol. Suppose
Alice shares a state with a reference system R to which she does not have access:

|ψ〉RA1 ≡
D2∑

l,m=1

αl,m |l〉R |m〉A1 , (4)

where {|l〉} and {|m〉} are some orthonormal bases for R and A1, respectively. We say that Alice
and Bob have implemented a coherent channel if they execute the map |m〉A1 → |m〉A1

|m〉B1 ,
which transforms the above state to

D2∑
l,m=1

αl,m |l〉R |m〉A1
|m〉B1 . (5)

We say that they have implemented a coherent channel approximately if the state resulting from
the protocol is ε-close in trace distance to the above state. If we can show that ε is an arbitrary
positive number that approaches zero in the asymptotic limit, then the simulation of an approximate
coherent channel asymptotically becomes an exact simulation. Alice’s first step is to append her
shares of the entangled state |ϕ〉AnBn to |ψ〉RA1 and apply the following controlled unitary from
her system A1 to her system An: ∑

m

|m〉〈m|A1 ⊗ UAn(s(m)). (6)

The resulting global state is as follows:∑
l,m

αl,m |l〉R |m〉A1UAn(s(m))|ϕ〉AnBn . (7)
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By the structure of the unitaries U(s(m)) (see the book), the above state is equivalent to the
following one: ∑

l,m

αl,m |l〉R |m〉A1U
T
Bn(s(m))|ϕ〉AnBn . (8)

Interestingly, observe that Alice applying the controlled gate in (6) is the same as her applying the
non-local controlled gate

∑
m |m〉 〈m|A1

⊗ UTBn(s(m)), due to the non-local (and perhaps spooky!)
properties of the entangled state |ϕ〉AnBn . Alice then sends her systems An through many uses of
the noisy quantum channel NA→B′ , whose isometric extension is UNA→B′E . Let |ϕ〉B′nEnBn denote
the state resulting from an isometric extension UNA→B′E of the channel acting on the state |ϕ〉AnBn :

|ϕ〉B′nEnBn ≡ UNAn→B′nEn |ϕ〉AnBn . (9)

After Alice transmits through the channel, the state becomes∑
l,m

αl,m |l〉R |m〉A1U
T
Bn(s(m))|ϕ〉B′nEnBn , (10)

where Bob now holds his shares Bn of the entanglement and the channel outputs B′n. (Observe
that the action of the controlled unitary in (6) commutes with the action of the channel.) Rather
than perform an incoherent measurement with the POVM

{
ΛmB′nBn

}
, Bob applies a coherent gentle

measurement, an isometry of the following form:∑
m

√
ΛmB′nBn ⊗ |m〉B1 . (11)

Using the result from the homework, we can readily check that the resulting state is 2
√
ε-close in

trace distance to the following state:∑
l,m

αl,m |l〉R |m〉A1U
T
Bn(s(m))|ϕ〉B′nEnBn |m〉B1 . (12)

Thus, for the rest of the protocol, we pretend that they are acting on the above state. Alice and
Bob would like to coherently remove the coupling of their index m to the environment, so Bob
performs the following controlled unitary:∑

m

|m〉〈m|B1 ⊗ U∗Bn(s(m)), (13)

and the final state is

D2∑
l,m=1

αl,m |l〉R |m〉A1
|ϕ〉B′nEnBn |m〉B1 =

 D2∑
l,m=1

αl,m |l〉R |m〉A1 |m〉B1

⊗ |ϕ〉B′nEnBn . (14)

Thus, this protocol implements a D2-dimensional coherent channel up to an arbitrarily small error,
and we have shown that the resource inequality in the statement of the theorem holds. Figure 1
depicts the entanglement-assisted coherent coding protocol.

It is now a straightforward task to convert the protocol from Theorem 1 into one for entanglement-
assisted quantum communication, by exploiting the coherent communication identity.
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Figure 1: The protocol for entanglement-assisted coherent communication. Observe that it is the
coherent version of the protocol for entanglement-assisted classical communication, just as coherent
dense coding is the coherent version of super-dense coding. Instead of applying conditional unitaries,
Alice applies a controlled unitary from her system A1 to her share of the entanglement and sends
the encoded state through many uses of the noisy channel. Rather than performing a POVM, Bob
performs a coherent gentle measurement from his systems B′n and Bn to an ancilla B1. Finally,
he applies a similar controlled unitary in order to decouple the environment from the state of his
ancilla B1.

Corollary 2 (Entanglement-Assisted Quantum Communication). The following resource inequality
corresponds to an achievable protocol for entanglement-assisted quantum communication over a
noisy quantum channel:

〈N〉+
1

2
I(A;E)ϕ [qq] ≥ 1

2
I(A;B)ϕ [q → q] , (15)

where |ϕ〉ABE ≡ UNA′→BE |ϕ〉AA′ and UNA′→BE is an isometric extension of the channel NA′→B.

Consider the coherent communication identity. This identity states that a D2-dimensional coherent
channel can perfectly simulate a D-dimensional quantum channel and a maximally entangled state
|Φ〉AB with Schmidt rank D. In terms of cobits, qubits, and ebits, the coherent communication
identity is the following resource equality for D-dimensional systems:

2 logD [q → qq] = logD [q → q] + logD [qq] . (16)

Consider the following chain of resource inequalities:

〈N〉+H(A)ϕ [qq] ≥ I(A;B)ϕ [q → qq] (17)

≥ 1

2
I(A;B)ϕ [q → q] +

1

2
I(A;B)ϕ [qq] . (18)

The first resource inequality is the statement of Theorem 1, and the second resource inequality
follows from an application of coherent teleportation. If we then allow for catalytic protocols, in
which we allow for some use of a resource with the demand that it be returned at the end of the
protocol, we have a protocol for entanglement-assisted quantum communication:

〈N〉+
1

2
I(A;E)ϕ [qq] ≥ 1

2
I(A;B)ϕ [q → q] , (19)
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because H(A)ϕ − 1
2I(A;B)ϕ = 1

2I(A;E)ϕ.

When comparing the entanglement consumption rate of the naive protocol in (1)–(2) with that of
the protocol in Theorem 2, we see that the former requires an additional I(A;B)ρ ebits per channel
use. Also, Theorem 2 leads to a simple proof of the achievability part of the quantum capacity
theorem, as we see in the next section.

4 Quantum Communication

We can obtain a protocol for quantum communication simply by combining the protocol from
Theorem 2 further with entanglement distribution. The resulting protocol again makes catalytic
use of entanglement, in the sense that it exploits some amount of entanglement shared between
Alice and Bob at the beginning of the protocol, but it generates the same amount of entanglement
at the end, so that the net entanglement consumption rate of the protocol is zero.

Corollary 3 (Quantum Communication). The coherent information Q(N ) is an achievable rate
for quantum communication over a quantum channel N . That is, the following resource inequality
holds:

〈N〉 ≥ Q(N ) [q → q] , (20)

where Q(N ) ≡ maxϕ I(A〉B)ρ and ρAB ≡ NA′→B(ϕAA′).

Proof. If we further combine the entanglement-assisted quantum communication protocol from
Theorem 2 with entanglement distribution at a rate 1

2I(A;E)ρ, we obtain the following resource
inequalities:

〈N〉+
1

2
I(A;E)ρ [qq]

≥ 1

2
[I(A;B)ρ − I(A;E)ρ] [q → q] +

1

2
I(A;E)ρ [q → q] (21)

≥ 1

2
[I(A;B)ρ − I(A;E)ρ] [q → q] +

1

2
I(A;E)ρ [qq] , (22)

which after resource cancelation, becomes

〈N〉 ≥ I(A〉B)ρ [q → q] , (23)

because I(A〉B)ρ = 1
2 [I(A;B)ρ − I(A;E)ρ]. They can achieve the coherent information of the

channel simply by generating codes from the state ϕAA′ that maximizes the channel’s coherent
information.

5 Noisy Super-Dense Coding

Recall that the resource inequality for super-dense coding is

[q → q] + [qq] ≥ 2 [c→ c] . (24)

The entanglement-assisted classical communication protocol from the previous chapter is one way
to generalize this protocol to a noisy setting, simply by replacing the noiseless qubit channels
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Figure 2: The protocol for noisy super-dense coding that corresponds to the resource inequality
in Theorem 4. Alice first projects her share into its typical subspace (not depicted). She then
applies a unitary encoding U (s(m)), based on her message m, to her share of the state ρAnBn . She
compresses her state to approximately nH(A)ρ qubits and transmits these qubits over noiseless
qubit channels. Bob decompresses the state and performs a decoding POVM that gives Alice’s
message m with high probability.

in (24) with many uses of a noisy quantum channel. This replacement leads to the setting of
entanglement-assisted classical communication presented in the previous chapter.

Another way to generalize super-dense coding is to let the entanglement be noisy while keeping the
quantum channels noiseless. We allow Alice and Bob access to many copies of some shared noisy
state ρAB and to many uses of a noiseless qubit channel with the goal of generating noiseless classical
communication. One might expect the resulting protocol to be similar to that for entanglement-
assisted classical communication, and this is indeed the case. The resulting protocol is known as
noisy super-dense coding :

Theorem 4 (Noisy Super-Dense Coding). The following resource inequality corresponds to an
achievable protocol for quantum-assisted classical communication with a noisy quantum state:

〈ρAB〉+H(A)ρ [q → q] ≥ I(A;B)ρ [c→ c] , (25)

where ρAB is some noisy bipartite state that Alice and Bob share at the beginning of the protocol.

Proof. Please see the book for a complete proof. The main idea is similar to that for the direct
part of the entanglement-assisted capacity theorem. We just summarize the protocol. Alice and
Bob begin with the state ρAnBn . Alice first performs a typical subspace measurement of her system
An. This measurement succeeds with high probability and reduces the size of her system An to a
subspace with size approximately equal to nH(A)ρ qubits. If Alice wishes to send message m, she
applies the unitary UAn(s(m)) to her share of the state. She then performs a compression isometry
from her subspace of An to nH(A)ρ qubits. She transmits her qubits over nH(A)ρ noiseless qubit
channels, and Bob receives them. Bob performs the decompression isometry from the space of
nH(A)ρ noiseless qubits to a space isomorphic to Alice’s original systems An. He then performs
the decoding POVM {ΛmAnBn} and determines Alice’s message m with vanishingly small error
probability. Figure 2 depicts the protocol.

6 State Transfer

We can also construct a coherent version of the noisy super-dense coding protocol, in a manner
similar to the way in which the proof of Theorem 1 constructs a coherent version of entanglement-
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assisted classical communication. However, the coherent version of noisy super-dense coding
achieves an additional task: the transfer of Alice’s share of the state (ρAB)⊗n to Bob. The resulting
protocol is known as coherent state transfer, and from this protocol, we can derive a protocol for
quantum-communication-assisted state transfer, or quantum-assisted state transfer3 for short.

Theorem 5 (Coherent State Transfer). The following resource inequality corresponds to an achiev-
able protocol for coherent state transfer with a noisy state ρAB:

〈WS→AB : ρS〉+H(A)ρ [q → q] ≥ I(A;B)ρ [q → qq] + 〈idS→B̂B : ρS〉, (26)

where ρAB is some noisy bipartite state that Alice and Bob share at the beginning of the protocol.

The resource inequality in (42) features some notation that we have not seen yet. The expression
〈WS→AB : ρS〉 means that a source party S distributes many copies of the state ρS to Alice and
Bob, by applying some isometry WS→AB to the state ρS . This resource is effectively equivalent
to Alice and Bob sharing many copies of the state ρAB, a resource we expressed in Theorem 4
as 〈ρAB〉. The expression 〈idS→B̂B : ρS〉 means that a source party applies the identity map to
ρS and gives the full state to Bob. We can now state the meaning of the resource inequality in
(42): Using n copies of the state ρAB and nH(A)ρ noiseless qubit channels, Alice can simulate
nI(A;B)ρ noiseless coherent channels to Bob while at the same time transferring her share of the
state (ρAB)⊗n to him.

Proof. A proof proceeds similarly to the proof of Theorem 1. Let |ϕ〉ABR be a purification of ρAB.
Alice begins with a state that she shares with a reference system R1, on which she would like to
simulate coherent channels:

|ψ〉R1A1 ≡
D2∑

l,m=1

αl,m |l〉R1
|m〉A1 , (27)

where D2 ≈ 2nI(A;B)ρ . She appends |ψ〉R1A1 to |ϕ〉AnBnRn ≡ (|ϕ〉ABR)⊗n and applies a typical
subspace measurement to her system An. (In what follows, we use the same notation for the
typical projected state because the states are the same up to a vanishingly small error.) She
applies the following controlled unitary to her systems A1A

n:∑
m

|m〉〈m|A1 ⊗ UAn(s(m)), (28)

resulting in the overall state∑
l,m

αl,m |l〉R1
|m〉A1

UAn(s(m))|ϕ〉AnBnRn . (29)

Alice compresses her An systems, sends them over nH(A)ρ noiseless qubit channels, and Bob
receives them. He decompresses them and places them in systems B̂n isomorphic to An. The
resulting state is the same as |ϕ〉AnBnRn , with the systems An replaced by B̂n. Bob performs a
coherent gentle measurement of the following form:∑

m

√
Λm
B̂nBn

⊗ |m〉B1 , (30)

3This protocol goes by several other names in the quantum Shannon theory literature: state transfer, fully quantum
Slepian–Wolf, state merging, and the merging mother.
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Figure 3: The protocol for coherent state transfer, a coherent version of the noisy super-dense coding
protocol that accomplishes the task of state transfer in addition to coherent communication.

resulting in a state that is close in trace distance to∑
l,m

αl,m |l〉R1
|m〉A1

|m〉B1UB̂n(s(m))|ϕ〉B̂nBnRn . (31)

He finally performs the controlled unitary∑
m

|m〉〈m|B1 ⊗ U
†
B̂n

(s(m)), (32)

resulting in the state ∑
l,m

αl,m |l〉R1
|m〉A1

|m〉B1

⊗ |ϕ〉B̂nBnRn . (33)

Thus, Alice has simulated nI(A;B)ρ coherent channels to Bob with arbitrarily small error, while
also transferring her share of the state |ϕ〉AnBnRn to him. Figure 3 depicts the protocol.

We obtain the following resource inequality for quantum-assisted state transfer, by combining the
above protocol with the coherent communication identity:

Corollary 6 (Quantum-Assisted State Transfer). The following resource inequality corresponds to
an achievable protocol for quantum-assisted state transfer with a noisy state ρAB:

〈WS→AB : ρS〉+
1

2
I(A;R)ϕ [q → q] ≥ 1

2
I(A;B)ϕ [qq] + 〈idS→B̂B : ρS〉, (34)

where ρAB is some noisy bipartite state that Alice and Bob share at the beginning of the protocol,
and |ϕ〉ABR is a purification of it.
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Proof. Consider the following chain of resource inequalities:

〈WS→AB : ρS〉+H(A)ϕ [qq]

≥ I(A;B)ϕ [q → qq] + 〈idS→B̂B : ρS〉 (35)

≥ 1

2
I(A;B)ϕ [q → q] +

1

2
I(A;B)ϕ [qq] + 〈idS→B̂B : ρS〉, (36)

where the first follows from coherent state transfer and the second follows from the coherent com-
munication identity. By resource cancelation, we obtain the resource inequality in the statement
of the theorem because 1

2I(A;R)ϕ = H(A)ρ − 1
2I(A;B)ρ.

Corollary 7 (Classical-Assisted State Transfer). The following resource inequality corresponds to
an achievable protocol for classical-assisted state transfer with a noisy state ρAB:

〈WS→AB : ρS〉+ I(A;R)ϕ [c→ c] ≥ I(A〉B)ϕ [qq] + 〈idS→B̂B : ρS〉, (37)

where ρAB is some noisy bipartite state that Alice and Bob share at the beginning of the protocol,
and |ϕ〉ABR is a purification of it.

Proof. We simply combine the protocol above with teleportation:

〈WS→AB : ρS〉+
1

2
I(A;R)ϕ [q → q] + I(A;R)ϕ [c→ c] +

1

2
I(A;R)ϕ [qq]

≥ 1

2
I(A;B)ϕ [qq] + 〈idS→B̂B : ρS〉+

1

2
I(A;R)ϕ [q → q] (38)

Canceling terms for both quantum communication and entanglement, we obtain the resource in-
equality in the statement of the corollary.

The above protocol gives a wonderful operational interpretation to the coherent information (or
negative conditional entropy −H(A|B)ρ). When the coherent information is positive, Alice and
Bob share that rate of entanglement at the end of the protocol (and thus the ability to teleport if
extra classical communication is available). When the coherent information is negative, they need
to consume entanglement at a rate of H(A|B)ρ ebits per copy in order for the state transfer process
to complete.
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