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1 Overview

In the last lecture, we proved the HSW classical capacity theorem.

In this lecture, we discuss entanglement-assisted classical communication.

2 Introduction

We have learned that shared entanglement is often helpful in quantum communication. This is
certainly true for the case of a noiseless qubit channel. Without shared entanglement, the most
classical information that a sender can reliably transmit over a noiseless qubit channel is just
one classical bit. With shared entanglement, they can achieve the super-dense coding resource
inequality:

[q → q] + [qq] ≥ 2 [c→ c] . (1)

That is, with one noiseless qubit channel and one shared noiseless ebit, the sender can reliably
transmit two classical bits.

A natural question then for us to consider is whether shared entanglement could be helpful in trans-
mitting classical information over a noisy quantum channel N . As a first simplifying assumption,
we let Alice and Bob have access to an infinite supply of entanglement, in whatever form they wish,
and we would like to know how much classical information Alice can reliably transmit to Bob over
such an entanglement-assisted quantum channel. That is, we would like to determine the highest
achievable rate C of classical communication in the following resource inequality:

〈N〉+∞ [qq] ≥ C [c→ c] . (2)

The answer to this question is one of the strongest known results in quantum Shannon theory, and
it is given by the entanglement-assisted classical capacity theorem. This theorem states that the
mutual information I(N ) of a quantum channel N is equal to its entanglement-assisted classical
capacity, where

I(N ) ≡ max
φAA′

I(A;B)ρ, (3)

ρAB ≡ NA′→B(φAA′), and the maximization is over all pure bipartite states of the form φAA′ . We
should stress that there is no need to regularize this formula in order to characterize the capacity
(as done in the previous chapter and as is so often needed in quantum Shannon theory). The
value of this formula is the capacity. Also, the optimization task that the formula in (3) sets
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out is a straightforward convex optimization program. Any local maximum is a global maximum
because the quantum mutual information is concave in the input state φA′ (recall Theorem ?? from
Chapter ??) and the set of density operators is convex.

From the perspective of an information theorist, we should only say that a capacity theorem has
been solved if there is a tractable formula equal to the optimal rate for achieving a particular
operational task. The formula should apply to an arbitrary quantum channel, and it should be
a function of that channel. Otherwise, the capacity theorem is still unsolved. There are several
operative words in the above sentences that we should explain in more detail. The formula should be
tractable, meaning that it sets out an optimization task which is efficient to solve in the dimension
of the channel’s input system. The formula should give the optimal achievable rate for the given
information-processing task, meaning that if a rate exceeds the capacity of the channel, then the
probability of error for any such protocol should be bounded away from zero as the number of
channel uses grows large.1 Finally, perhaps the most stringent (though related) criterion is that the
formula itself (and not its regularization) should give the capacity of an arbitrary quantum channel.
Despite the success of the HSW coding theorem in demonstrating that the Holevo information of
a channel is an achievable rate for classical communication, the classical capacity of a quantum
channel is still unsolved because there is an example of a channel for which the Holevo information
is not equal to that channel’s capacity (see Section ??). Thus, it is rather impressive that the
formula in (3) is equal to the entanglement-assisted classical capacity of an arbitrary channel, given
the stringent requirements that we have established for a formula to give the capacity. In this sense,
shared entanglement simplifies quantum Shannon theory.

This chapter presents a comprehensive study of the entanglement-assisted classical capacity theo-
rem. We begin by defining the information-processing task, consisting of all the steps in a general
protocol for classical communication over an entanglement-assisted quantum channel. We then
present a simple example of a strategy for entanglement-assisted classical coding that is inspired
by dense coding, and in turn, that inspires a strategy for the general case. Section 5 states the
entanglement-assisted classical capacity theorem. Section 6 gives a proof of the direct coding theo-
rem, making use of quantum typicality from Chapter ??, the packing lemma from Chapter ??, and
ideas in the entanglement concentration protocol from Chapter ??. It demonstrates that the rate
in (3) is an achievable rate for entanglement-assisted classical communication. After taking a step
back from the protocol, we can realize that it is merely a glorified super-dense coding applied to
noisy quantum channels. Section 7 gives a proof of the converse of the entanglement-assisted clas-
sical capacity theorem. It exploits familiar tools such as the Alicki–Fannes inequality, the quantum
data-processing inequality, and the chain rule for quantum mutual information (all from Chap-
ter ??), and the last part of it exploits additivity of the mutual information of a quantum channel
(from Chapter ??). The converse theorem establishes that the rate in (3) is optimal. With the proof
of the capacity theorem complete, we then show the interesting result that the classical capacity of
a quantum channel assisted by a quantum feedback channel is equal to the entanglement-assisted
classical capacity of that channel. We close the chapter by computing the entanglement-assisted
classical capacity of both a quantum erasure channel and an amplitude damping channel, and we
leave the computation of the entanglement-assisted capacities of two other channels as exercises.

1We could strengthen this requirement even more by demanding that the probability of error increases expo-
nentially to one in the asymptotic limit. Fulfilling such a demand would constitute a proof of a strong converse
theorem.
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Figure 1: The most general protocol for entanglement-assisted classical communication. Alice
applies an encoder to her classical message M and her share TA of the entanglement, and she
inputs the encoded systems A′n to many uses of the channel. Bob receives the outputs of the
channel, combines them with his share of the entanglement, and performs some decoding operation
to estimate Alice’s transmitted message.

3 The Information-Processing Task

We begin by explicitly defining the information-processing task of entanglement-assisted classical
communication, i.e., we define an (n,C, ε) entanglement-assisted classical code and what it means
for a rate C to be achievable. Prior to the start of the protocol, we assume that Alice and Bob
share pure-state entanglement in whatever form they wish. For simplicity, we can just assume that
they share a maximally entangled state of the following form:

|Φ〉TATB ≡
1√
d

d−1∑
i=0

|i〉TA |i〉TB , (4)

where the dimension d is as large as they would like it to be. Alice selects some message m uniformly
at random from a set M of messages. Let M denote the random variable corresponding to Alice’s
random choice of message, and let |M| be the cardinality of the setM. She applies some encoding
channel EmTA→A′n to her share of the entangled state ΦTATB depending on her choice of message m.
The global state then becomes

EmTA→A′n(ΦTATB ). (5)

Alice transmits the systems A′n over n independent uses of a noisy channel NA′→B, leading to the
following state:

NA′n→Bn(EmTA→A′n(ΦTATB )), (6)

where NA′n→Bn ≡ (NA′→B)⊗n. Bob receives the systems Bn, combines them with his share TB of
the entanglement, and performs a POVM {ΛmBnTB

} on the channel outputs Bn and his share TB
of the entanglement in order to detect the message m that Alice transmits. Figure 1 depicts such
a general protocol for entanglement-assisted classical communication.
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Let M ′ denote the random variable for the output of Bob’s decoding POVM (this represents Bob’s
estimate of the message). The probability of Bob correctly decoding Alice’s message is

Pr
{
M ′ = m|M = m

}
= Tr{ΛmBnTB

NA′n→Bn(EmTA→A′n(ΦTATB ))}, (7)

and thus the probability of error pe(m) for message m is

pe(m) ≡ Tr{
(
I − ΛmBnTB

)
NA′n→Bn(EmTA→A′n(ΦTATB ))}. (8)

The maximal probability of error p∗e for the coding scheme is

p∗e ≡ max
m∈M

pe(m). (9)

The rate C of communication is

C ≡ 1

n
log2 |M| , (10)

and the code has ε error if p∗e ≤ ε.

A rate C of entanglement-assisted classical communication is achievable if there exists an (n,C − δ, ε)
entanglement-assisted classical code for all ε ∈ (0, 1), δ > 0, and sufficiently large n. The
entanglement-assisted classical capacity CEA(N ) of a quantum channel N is equal to the supremum
of all achievable rates of entanglement-assisted classical communication.

4 A Preliminary Example

Let us first recall a few items about qudits. The maximally entangled qudit state is

|Φ〉AB ≡
1√
d

d−1∑
i=0

|i〉A|i〉B. (11)

Recall from Section ?? that the Heisenberg–Weyl operators X(x) and Z(z) are an extension of the
Pauli matrices to d dimensions:

X(x) ≡
d−1∑
x′=0

∣∣x+ x′
〉
〈x′|, Z(z) ≡

d−1∑
z′=0

e2πizz′/d
∣∣z′〉 〈z′∣∣ . (12)

Let |Φx,z〉AB denote the state that results when Alice applies the operator X(x)Z(z) to her share
of the maximally entangled state |Φ〉AB:

|Φx,z〉AB ≡ (XA(x)ZA(z)⊗ IB) |Φ〉AB . (13)

Recall from Exercise ?? that the set of states {|Φx,z〉AB}
d−1
x,z=0 forms a complete orthonormal basis:

〈Φx1,z1 |Φx2,z2〉 = δx1,x2δz1,z2 ,

d−1∑
x,z=0

|Φx,z〉 〈Φx,z| = IAB. (14)

Let πAB denote the maximally mixed state on Alice and Bob’s system: πAB ≡ IAB/d2, and let πA
and πB denote the respective maximally mixed states on Alice and Bob’s systems: πA ≡ IA/d and
πB ≡ IB/d. Observe that πAB = πA ⊗ πB.
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Figure 2: A simple scheme, inspired by super-dense coding, for Alice and Bob to exploit shared
entanglement and a noisy channel in order to establish an ensemble at Bob’s receiving end.

We now consider a simple strategy, inspired by super-dense coding and the HSW coding scheme from
Theorem ??, that Alice and Bob can employ for entanglement-assisted classical communication.
That is, we show how a strategy similar to super-dense coding induces a particular ensemble at
Bob’s receiving end, to which we can then apply the HSW coding theorem in order to establish the
existence of a good code for entanglement-assisted classical communication. Suppose that Alice
and Bob possess a maximally entangled qudit state |Φ〉AB. Alice chooses two symbols x and z
uniformly at random, each in {0, . . . , d− 1}. She applies the operators X(x)Z(z) to her side of the
maximally entangled state |Φ〉AB, and the resulting state is |Φx,z〉AB. She then sends her system
A over the noisy channel NA→B′ , and Bob receives the output B′ from the channel. The noisy
channel on the whole system is NA→B′ ⊗ idB, and the ensemble that Bob receives is as follows:{

1

d2
, (NA→B′ ⊗ idB) (Φx,z

AB)

}
. (15)

This constitutes an ensemble that they can prepare with one use of the channel and one shared
entangled state (Figure 2 depicts all of these steps). But, in general, we allow them to exploit
many uses of the channel and however much entanglement that they need. Bob can then perform
a collective measurement on both his half of the entanglement and the channel outputs in order to
determine a message that Alice is transmitting.

Consider that the above scenario is similar to HSW coding. Theorem ?? from the previous chap-
ter proves that the Holevo information of the above ensemble is an achievable rate for classical
communication over this entanglement-assisted quantum channel. Thus, we can already state and
prove the following corollary of Theorem ??, simply by calculating the Holevo information of the
ensemble in (15).

Corollary 1. The quantum mutual information I(A;B)σ of the state σAB ≡ NA′→B(ΦAA′) is an
achievable rate for entanglement-assisted classical communication over a quantum channel NA′→B.

Proof. Observe that we can map the ensemble in (15) to the following classical–quantum state:

ρXZB′B ≡
d−1∑
x,z=0

1

d2
|x〉〈x|X ⊗ |z〉〈z|Z ⊗ (NA→B′ ⊗ idB) (Φx,z

AB). (16)

The Holevo information of this classical–quantum state is

I(XZ;B′B)ρ = H(B′B)ρ −H(B′B|XZ)ρ, (17)
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and it is an achievable rate for entanglement-assisted classical communication over the channel
NA′→B by Theorem ??. We now proceed to calculate it. First, we determine the entropy H(B′B)ρ
by tracing over the classical registers XZ:

TrXZ {ρXZB′B} =

d−1∑
x,z=0

1

d2
(NA→B′ ⊗ idB) (Φx,z

AB) (18)

= (NA→B′ ⊗ idB)

 d−1∑
x,z=0

1

d2
Φx,z
AB

 (19)

= (NA→B′ ⊗ idB) (πAB) (20)

= NA→B′ (πA)⊗ πB, (21)

where the third equality follows from (14). Thus, the entropy H(B′B) is as follows:

H(B′B) = H(NA→B′ (πA)) +H(πB). (22)

We now determine the conditional quantum entropy H(B′B|XZ)ρ:

H(B′B|XZ)ρ

=

d−1∑
x,z=0

1

d2
H
(
(NA→B′ ⊗ idB) (Φx,z

AB)
)

(23)

=
1

d2

d−1∑
x,z=0

H
(
NA→B′

[
(XA(x)ZA(z)) (ΦAB)

(
Z†A(z)X†A(x)

)])
(24)

=
1

d2

d−1∑
x,z=0

H
(
NA→B′

[
ZTB(z)XT

B(x)(ΦAB)X∗B(x)Z∗B (z)
])

(25)

=
1

d2

d−1∑
x,z=0

H
(
ZTB(z)XT

B(x) [(NA→B′) (ΦAB)] (X∗B(x)Z∗B(z))
)

(26)

= H(NA→B′(ΦAB)). (27)

The first equality follows because the system XZ is classical (recall the result in Section ??). The
second equality follows from the definition of the state Φx,z

AB. The third equality follows by exploiting
the Bell-state matrix identity in Exercise ??. The fourth equality follows because the unitaries that
Alice applies commute with the action of the channel. Finally, the entropy of a state is invariant
under any unitaries applied to that state. So the Holevo information I(XZ;B′B)ρ of the state
ρXZB′B in (16) is

I(XZ;B′B)ρ = H(N (πA)) +H(πB)−H((NA→B′ ⊗ idB) (ΦAB)). (28)

Equivalently, we can write it as the following quantum mutual information:

I(A;B)σ, (29)

with respect to the state σAB ≡ NA′→B(ΦAA′).
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For some channels, the quantum mutual information in Corollary 1 is equal to that channel’s
entanglement-assisted classical capacity. This occurs for the depolarizing channel, a dephasing
channel, and an erasure channel to name a few. But there are examples of channels, such as the
amplitude damping channel, where the quantum mutual information in Corollary 1 is not equal
to the entanglement-assisted capacity. In the general case, it might perhaps be intuitive that the
quantum mutual information of the channel in (3) is equal to the entanglement-assisted capacity
of the channel, and it is the goal of the next sections to prove this result.

5 Entanglement-Assisted Capacity Theorem

We now state the entanglement-assisted classical capacity theorem. Section 6 proves the direct
part of this theorem, and Section 7 proves its converse part.

Theorem 2 (Bennett–Shor–Smolin–Thapliyal). The entanglement-assisted classical capacity of a
quantum channel is equal to the channel’s mutual information:

CEA(N ) = I(N ), (30)

where the mutual information I(N ) of a channel N is defined as I(N ) ≡ maxϕAA′ I(A;B)ρ, ρAB ≡
NA′→B(ϕAA′), and ϕAA′ is a pure bipartite state.

6 The Direct Coding Theorem

The direct coding theorem is a statement of achievability:

Theorem 3 (Direct Coding). The following resource inequality corresponds to an achievable pro-
tocol for entanglement-assisted classical communication over a noisy quantum channel:

〈N〉+H(A)ρ [qq] ≥ I(A;B)ρ [c→ c] , (31)

where ρAB ≡ NA′→B(ϕAA′).

We will not prove this here, but instead point to the book for a detailed proof.

7 The Converse Theorem

This section contains a proof of the converse part of the entanglement-assisted classical capacity
theorem. Let us begin by supposing that Alice and Bob are trying to use the entanglement-assisted
channel many times to accomplish the task of randomness distribution (recall that we took this
approach for the converse of the classical capacity theorem in Section ??). An upper bound on the
rate at which Alice can distribute randomness to Bob also serves as an upper bound on the rate
at which they can communicate because a noiseless classical channel can distribute randomness.
In such a task, Alice and Bob share entanglement in some pure state |Φ〉TATB (note however that
our proof below applies to any shared state). Alice first prepares the maximally correlated state
ΦMM ′ , and the rate of randomness in this state is C − δ ≡ 1

n log |M |. Alice then applies some
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encoding map EM ′TA→An to the classical system M ′ and her share TA of the shared entanglement.
The resulting state is

EM ′TA→An(ΦMM ′ ⊗ ΦTATB ). (32)

She sends her An systems through many uses NAn→Bn of the channel NA→B, and Bob receives the
systems Bn, producing the state

ωMTBBn ≡ NAn→Bn(EM ′TA→An(ΦMM ′ ⊗ ΦTATB )). (33)

Finally, Bob performs some decoding map DBnTB→M̂ on the above state to give

ω′
MM̂
≡ DBnTB→M̂ (ωMTBBn). (34)

If the protocol is ε-good for randomness distribution, then the actual state ω′
MM̂

resulting from the
protocol should be ε-close in trace distance to the ideal shared randomness state:∥∥∥ω′

MM̂
− ΦMM̂

∥∥∥
1
≤ ε. (35)

We now show that the quantum mutual information of the channel serves as an upper bound on
the rate C of any reliable protocol for entanglement-assisted randomness distribution (a protocol
meeting the error criterion in (35))). Consider the following chain of inequalities:

log |M | = I(M ; M̂)Φ (36)

≤ I(M ; M̂)ω′ + f(n, ε) (37)

≤ I(M ;BnTB)ω + f(n, ε) (38)

= I(TBM ;Bn)ω + I(M ;TB)ω − I(Bn;TB)ω + f(n, ε) (39)

= I(TBM ;Bn)ω − I(Bn;TB)ω + f(n, ε) (40)

≤ I(TBM ;Bn)ω + f(n, ε) (41)

≤ max
ρXAA′n

I(AX;Bn)ρ + f(n, ε). (42)

The first equality follows by evaluating the quantum mutual information of the shared randomness
state ΦMM̂ . The first inequality follows from the assumption that the protocol satisfies the error
criterion in (35) and by applying the Alicki–Fannes inequality from Exercise ?? with f(n, ε) ≡
6ε log |M |+ 4h2(ε). This function has the property that limε→0 limn→∞

1
nf(n, ε) = 0. The second

inequality follows from quantum data processing (Theorem ??)—Bob processes the state ω with
the decoder D to get the state ω′. The second equality follows from the chain rule for quantum
mutual information (see Exercise ??). The third equality follows because the systems M and TB
are in a product state, so I(M ;TB)ω = 0. The third inequality follows because I(Bn;TB)ω ≥ 0.
Observe that the state ωMTBBn is a classical–quantum state of the form

ρXABn ≡
∑
x

pX(x)|x〉〈x|X ⊗NA′n→Bn(ρxAA′n), (43)

where the classical system X in ρXABn plays the role of M in ωMTBBn and the quantum system A
in ρXABn plays the role of TB in ωMTBBn . Then the final inequality follows because the quantum
mutual information I(TBM ;Bn)ω can never be greater than the maximum of I(AX;Bn)ρ over all
input states of the form in (43).
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We can strengthen this converse proof considerably. First, observe that the most general form of an
encoding is an arbitrary CPTP map EM ′TA→An that acts on a classical register M ′ and a quantum
register TA. From Section ??, we know that this map takes the following form:

EM ′TA→An(ΦMM ′ ⊗ ΦTATB ) =
1

M

∑
m

|m〉〈m|M ⊗ EmTA→An(ΦTATB ), (44)

where each EmTA→An is a CPTP map. This particular form follows because the first register M ′ on
which the map EM ′TA→An acts is a classical register. Now, it would seem strange if performing
a conditional noisy encoding EmTA→An for each message m could somehow improve performance.
So, we would like to prove that conditional noisy encodings can never outperform conditional
isometric (noiseless) encodings. In this vein, since Alice is in control of the encoder, we allow
her to simulate the noisy encodings EmTA→An by acting with their isometric extensions UEmTA→AnE′

and tracing out the environments E′ (to which she has access). Then the value of the quantum
mutual information I(TBM ;Bn)ω is unchanged by this simulation. Now suppose instead that Alice
performs a complete projective measurement of the environment of the encoding and she places the
outcome of the measurement in some classical register L. Then the quantum mutual information
can only increase, a result that follows from the quantum data-processing inequality:

I(TBLM ;Bn)ω ≥ I(TBM ;Bn)ω. (45)

Thus, isometric encodings are sufficient for achieving the entanglement-assisted classical capacity.

We can view this result in a less operational (and more purely mathematical) way as well. Consider
a state of the form in (43). Suppose that each ρxAA′n has a spectral decomposition

ρxAA′n =
∑
y

pY |X(y|x)ψx,yAA′n , (46)

where the states ψx,yAA′n are pure. We can define the following augmented state:

ρXY ABn ≡
∑
x,y

pX(x)pY |X(y|x)|x〉〈x|X ⊗ |y〉〈y|Y ⊗NA′n→Bn(ψx,yAA′n), (47)

such that ρXABn = TrY {ρXY ABn}. Then the quantum data-processing inequality implies that

I(AX;Bn)ρ ≤ I(AXY ;Bn)ρ. (48)

By joining the classical Y register with the classical X register, the following equality holds:

max
ρXAA′n

I(AX;Bn)ρ = max
σXAA′n

I(AX;Bn)σ, (49)

where
σXABn ≡

∑
x

pX(x)|x〉〈x|X ⊗NA′n→Bn(ψxAA′n), (50)

so that the maximization is over only pure states ψxAA′n . Then we know from the result of Exercise ??
that

max
σXAA′n

I(AX;Bn)ω = max
φAA′n

I(A;Bn)ω, (51)
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where the maximization on the right-hand side is with respect to pure states φAA′n . Finally, from
additivity of the quantum mutual information of a quantum channel (Theorem ??) and an inductive
argument similar to that in Corollary ??, the following equality holds

max
φAA′n

I(A;Bn)ω = nI(N ). (52)

Thus, the bound on the classical rate C of a reliable protocol for entanglement-assisted randomness
distribution is

C − δ =
1

n
log |M | ≤ I(N ) +

1

n
f(n, ε), (53)

and it also serves as an upper bound for entanglement-assisted classical communication. Taking
the limit as n→∞ and as ε, δ → 0 then establishes that an achievable rate C necessarily satisfies
C ≤ I(N ). This demonstrates a single-letter upper bound on the entanglement-assisted classical
capacity of a quantum channel and completes the proof of Theorem 2.

7.1 Feedback Does Not Increase Capacity

The entanglement-assisted classical capacity formula is the closest formal analogy to Shannon’s
capacity formula for a classical channel. The mutual information I(N ) of a quantum channel N is
the optimum of the quantum mutual information over all bipartite input states:

I(N ) = max
φAA′

I(A;B), (54)

and it is equal to the channel’s entanglement-assisted classical capacity by Theorem 3. The mutual
information I(pY |X) of a classical channel pY |X is the optimum of the classical mutual information
over all correlated inputs to the channel:

I(pY |X) = max
XX′

I(X;Y ), (55)

where XX ′ are correlated random variables with the distribution pX,X′ (x, x
′) = pX(x)δx,x′ . The

formula is equal to the classical capacity of a classical channel by Shannon’s noisy coding theorem.
Both formulas not only appear similar in form, but they also have the important property of being
“single-letter,” meaning that the above formulas are equal to the capacity (this was not the case
for the Holevo information from the previous chapter).

We now consider another way in which the entanglement-assisted classical capacity is a good
candidate for being the fully quantum generalization of Shannon’s formula to the quantum world.
Though it might be surprising, it is well known that free access to a classical feedback channel from
receiver to sender does not increase the capacity of a classical channel. We state this result as the
following theorem (without proof).

Theorem 4 (Feedback Does Not Increase Classical Capacity). The feedback capacity of a classical
channel pY |X(y|x) is equal to the mutual information of that channel:

sup {C : C is achievable with feedback } = I(pY |X), (56)

where I(pY |X) is defined in (55).
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Figure 3: Three rounds of the most general protocol for classical communication with a quantum
feedback channel.

Given the above result, we might wonder if a similar result could hold for the entanglement-assisted
classical capacity. Such a result would more firmly place the entanglement-assisted classical capacity
as a good generalization of Shannon’s coding theorem. Indeed, the following theorem states that
this result holds.

Theorem 5 (Quantum Feedback Does Not Increase the EAC Capacity). The classical capacity of
a quantum channel assisted by a quantum feedback channel is equal to that channel’s entanglement-
assisted classical capacity:

sup {C | C is achievable with quantum feedback} = I(N ), (57)

where I(N ) is defined in (54).

Proof. We define free access to a quantum feedback channel to mean that there is a noiseless
quantum channel of arbitrarily large dimension going from the receiver Bob to the sender Alice.
The bound LHS ≥ RHS follows because Bob can use the quantum feedback channel to establish
an arbitrarily large amount of entanglement with Alice. They then just execute the protocol from
Section 6 to achieve a rate equal to the entanglement-assisted classical capacity.

The bound LHS ≤ RHS is much less obvious, and it requires a proof that is different from the proof
of Theorem 4. We first need to determine the most general protocol for classical communication
with the assistance of a quantum feedback channel. Figure 3 depicts such a protocol. The protocol
begins with Alice preparing a classical register M with a uniformly random message to be sent,
which is correlated with some system A′0. Bob uses the quantum feedback channel to send a
quantum system X0 to Alice, which is correlated with some quantum system B0. Alice performs
an encoding E1

A′0X0→A′1A1
. Alice sends system A1 through the first use of the channel N . Bob

now applies the decoding map D1
B1B′1→X1B′2

. The next encoder of Alice occurs, and the procedure

repeats. The last decoding map of Bob outputs a classical system M ′ which contains Bob’s estimate
of the message that Alice transmitted. The state of registers MBnB

′
n after the nth channelNAn→Bn

has been applied has the following form:

ω
(n)
MBnB′n

≡ NAn→Bn(ρ
(n)
MB′nAn

), (58)

where ρ
(n)
MB′nAn

is the state of registers MB′nAn after the nth encoding map has been applied. Let

ψ
(n)

R(n)MB′nAn
be a purification of ρ

(n)
MB′nAn

, and let

ω
(n)

R(n)MBnB′n
≡ NAn→Bn(ψ

(n)

R(n)MB′nAn
). (59)
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This protocol is the most general for classical communication with quantum feedback. We can now
proceed with proving the upper bound LHS ≤ RHS. To do so, we assume that the random variable
M modeling Alice’s message selection is a uniform random variable, and Bob obtains a random
variable M ′ by measuring all of his systems Bn and B′n at the end of the protocol. For any good
protocol for classical communication, the bound Pr {M ′ 6= M} ≤ ε applies. Consider the following
chain of inequalities (these steps are essentially the same as those in (58)–(61))):

log |M| = H(M) (60)

= I(M ;M ′) +H
(
M |M ′

)
(61)

≤ I(M ;M ′) + 1 + ε log |M| (62)

≤ I(M ;BnB
′
n)ω(n) + 1 + ε log |M| , (63)

where the last mutual information is with respect to the state in (71). This chain of inequalities
follows for the same reason as those in (58)–(61), with the last step following from quantum data
processing. Continuing, we have

I(M ;BnB
′
n)ω(n) = I(M ;Bn|B′n)ω(n) + I(M ;B′n)ω(n) (64)

≤ I(MB′n;Bn)ω(n) + I(M ;B′n)ω(n) (65)

≤ I(R(n)MB′n;Bn)ω(n) + I(M ;B′n)ω(n) . (66)

The first equality is the chain rule for mutual information. The first inequality follows because
I(M ;Bn|B′n) = I(MB′n;Bn) − I (B′n;Bn) ≤ I(MB′n;Bn). The second inequality follows from
quantum data processing. Now, given that the mutual information I(R(n)MB′n;Bn) is with respect
to the state in (71) and this state has the following form

NAn→Bn(φRAn), (67)

where φRAn is some pure state and R is some system not going into the channel (here identified
with R(n)MB′n), we can optimize over all such inputs to find that

I(R(n)MB′n;Bn)ω(n) ≤ I(N ), (68)

where I(N ) is the quantum mutual information of the channel. So this means that

I(M ;BnB
′
n)ω(n) ≤ I(N ) + I(M ;B′n)ω(n) (69)

≤ I(N ) + I(M ;Bn−1B
′
n−1)ω(n−1) . (70)

where the last inequality follows from quantum data processing (the systemB′n results from applying
the n − 1 decoder to the systems Bn−1B

′
n−1). At this point, we realize that the above chain of

steps (77)–(83) can be applied to I(M ;Bn−1B
′
n−1)ω(n−1) , so we iterate this sequence until we go all

the way back to the beginning of the protocol. Putting everything together, we get the following
upper bound on any achievable rate C for classical communication with quantum feedback:

C − δ ≤ I(N ) +
1

n
+
ε

n
log |M| , (71)

which becomes C ≤ I(N ) as n→∞ and ε, δ → 0.

Corollary 6. The capacity of a quantum channel with unlimited entanglement and classical feedback
is equal to the entanglement-assisted classical capacity of N .
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Proof. This result follows because I(N ) is a lower bound on this capacity (simply by avoiding use
of the classical feedback channel). Also, I(N ) is an upper bound on this capacity because the
entanglement and classical feedback channel can simulate an arbitrarily large quantum feedback
channel via teleportation, and the above theorem gives an upper bound of I(N ) for this setting.
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