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1 Overview

In the last lecture, we discussed a strategy for classical communication over a quantum channel
called sequential decoding.

In this lecture, we discuss an application to communication over optical channels. We then prove the
Holevo-Schumacher-Westmoreland theorem, which gives a characterization of the classical capacity
of a quantum channel. Finally, we show how this characterization simplifies for entanglement-
breaking channels.

2 Sequential Decoding for Optical Communication

We now provide a physical realization of the sequential decoding strategy in the context of optical
communications. In this setting, we suppose that a lossy bosonic channel, specified by the following
Heisenberg relations, connects Alice to Bob:

b̂ =
√
ηâ+

√
1− ηê, (1)

where â, b̂, and ê are the respective field operators for Alice’s input mode, Bob’s output mode, and
an environmental input mode (assumed to be in its vacuum state). The transmissivity η ∈ [0, 1]
is the fraction of Alice’s input photons that make it to Bob on average. We assume that Alice
is constrained to using mean photon number NS per channel use. The strategy for achieving the
classical capacity of this channel is for Alice to induce a classical-quantum channel, by selecting
α ∈ C and preparing a coherent state |α〉 at the input of the channel in (1). A coherent state in
quantum optics is defined as the following coherent superposition of photon number states:

|α〉 ≡ exp

{
−|α|2

2

} ∞∑
n=0

αn√
n!
|n〉.

It is often described as being the ideal state of a single mode of the light field output from a laser.
The most useful property of coherent states for classical communication over a pure-loss bosonic
channel is that it retains its purity. That is, if Alice inputs the state |α〉 to the pure-loss bosonic
channel with transmissivity η, then the state output for Bob and Eve is

|√ηα〉 ⊗ |
√

1− ηα〉,
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so that we recover a pure coherent state for Bob when tracing over the second mode. The resulting
induced classical-quantum channel to Bob is of the following form:

α→ |√ηα〉.

By choosing the distribution pX(x) in the achievability result for pure-state cq channels to be an
isotropic, complex Gaussian with variance NS :

pNS
(α) ≡ (1/πNS) exp

{
− |α|2/NS

}
,

we have that g(ηNS) is an achievable rate for classical communication, where

g(x) ≡ (x+ 1) log(x+ 1)− x log x.

The quantity g(ηNS) is the entropy of the average state of the ensemble {pNS
(α), |√ηα〉}:∫

d2α pNS
(α)|√ηα〉〈√ηα|,

which is a thermal state with mean photon number ηNS . Each quantum codeword selected from
the ensemble {pNS

(α), |α〉} has the following form:

|αn(m)〉 ≡ |α1(m)〉 ⊗ · · · ⊗ |αn(m)〉 .

We assume η = 1 above and for the rest of this section without loss of generality. Thus, the
sequential decoder consists of measurements of the following form for all m ∈M:{

|αn(m)〉〈αn(m)|, I⊗n − |αn(m)〉〈αn(m)|
}
. (2)

Observing that
|αn(m)〉 = D(α1(m))⊗ · · · ⊗D(αn(m))|0〉⊗n,

where D(α) ≡ exp
{
αâ† − α∗â

}
is the unitary “displacement” operator from quantum optics and

|0〉⊗n is the n-fold tensor product vacuum state, we see that that the decoder can implement the
measurement in (2) in three steps:

1. Displace the n-mode codeword state by

D(−α1(m))⊗ · · · ⊗D(−αn(m)).

2. Perform a “vacuum-or-not” measurement of the form{
|0〉〈0|⊗n, I⊗n − |0〉〈0|⊗n

}
.

If the vacuum outcome occurs, decode as the mth codeword. Otherwise, proceed.

3. Displace by D(α1(m))⊗ · · · ⊗D(αn(m)) with the same method as in Step 1.

The receiver just iterates this strategy for every codeword in the codebook. This strategy is in fact
capacity-achieving, but we do not prove that here.
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3 General Classical–Quantum Channels

Suppose now that Alice and Bob are connected by a mixed-state cq channel of the following form:

x→ ρxB. (3)

It is possible to show that the following rate is achievable for classical communication:

max
pX(x)

I(X;B)ω, (4)

where
ωXB ≡

∑
x

pX(x)|x〉〈x|X ⊗ ρxB. (5)

The main idea for doing this is to use the sequential decoding strategy, but with each projector
(codeword test) set to be a conditionally typical projector. How is this defined? Suppose we have
an ensemble of states {pX(x), ρxB}. Let ρxB =

∑
y pY |X(y|x)|yx〉〈yx| be a spectral decompositino of

ρxB. For a sequence xn ≡ x1 · · ·xn, we write

ρx
n

Bn ≡ ρx1B1
⊗ · · · ⊗ ρxnBn

. (6)

The (weak) conditionally typical subspace corresponding to a sequence xn is defined as

T δBn|xn ≡ span
{
|ynxn〉 :

∣∣− log pY n|Xn(yn|xn)−H(B|X)ω
∣∣ ≤ δ} . (7)

The conditionally typical projector onto this space is written as Πδ
Bn|xn . Then one can show that

EXn

{
Tr{Πδ

Bn|XnρX
n

Bn }
}
≥ 1− ε (8)

for all ε ∈ (0, 1), δ > 0, and sufficiently large n. It also follows from the definition that

Πδ
Bn|xnρ

xn

BnΠδ
Bn|xn ≤ 2−n[H(B|X)ω−δ]Πδ

Bn|xn . (9)

So the strategy consists of picking codewords independently at random according to a distribution
pX(x) which maximizes (4). The quantum codewords that Bob receives have the following form:

{ρx
n(m)
Bn }m∈M. (10)

To test whether Bob received the mth message, he performs the following measurement:

{Πδ
Bn|xn(m), Π̂

δ
Bn|xn(m)}, (11)

where Π̂δ
Bn|xn(m) ≡ I⊗n − Πδ

Bn|xn(m)The error probability when sending the mth message for this
scheme is then

1− Tr{Πδ
Bn|xn(m)Π̂

δ
Bn|xn(m−1) · · · Π̂

δ
Bn|xn(1)ρ

xn(m)
Bn Π̂δ

Bn|xn(1) · · · Π̂
δ
Bn|xn(m−1)Π

δ
Bn|xn(m)}. (12)

Using arguments similar to the pure-state channel, after an expectation over the messages and
codebook, we can argue that this is ≈

Tr{Πδ
Bnρ

xn(m)
Bn Πδ

Bn}

− Tr{Πδ
Bn|xn(m)Π̂

δ
Bn|xn(m−1) · · · Π̂

δ
Bn|xn(1)Π

δ
Bnρ

xn(m)
Bn Πδ

BnΠ̂δ
Bn|xn(1) · · · Π̂

δ
Bn|xn(m−1)Π

δ
Bn|xn(m)},

(13)
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where Πδ
Bn is the unconditionally typical projector for

∑
x pX(x)ρxB. We then apply the non-

commutative union bound and argue as before to get the following upper bound on the error
probability:

2
√
ε′ + |M| 2−n[I(X;B)−2δ], (14)

so that this decays exponentially with n by picking |M| = 2n[I(X;B)−3δ]. Combined with deran-
domization and expurgation, we can conclude that I(X;B) is an achievable rate.

4 General Channels

To get a strategy for any channel, note that we can induce a cq channel from any channel NA→B by
picking an input ensemble of the form {pX(x), ρxA}. Then the cq state representing the input-output
correlations is as follows:

σXB ≡
∑
x

pX(x)|x〉〈x|X ⊗NA→B(ρxA). (15)

So using the above strategy, the quantum codewords for Bob are

{N⊗nA→B(ρ
xn(m)
An ) ≡ NA→B(ρ

x1(m)
A )⊗ · · · ⊗ NA→B(ρ

xn(m)
A )}m∈M, (16)

and the above demonstrates that an achievable rate is

I(X;B)σ. (17)

Optimizing over all possible input ensembles gives a quantity known as the Holevo information of
the channel:

χ(N ) ≡ max
{pX(x),ρx}

I(X;B)σ. (18)

Of course, we could then form codes for the tensor-product channel N⊗k, and by a limiting argu-
ment, we find that the following regularized Holevo information is achievable:

lim
k→∞

1

k
χ(N⊗k). (19)

This is the best known expression for an achievable rate for a quantum channel, but for some
channels, it simplifies so that we can say that χ(N ) is achievable.

4.1 The Converse Theorem

The second part of the classical capacity theorem is the converse theorem, and we provide a simple
proof of it in this section. Suppose that Alice and Bob are trying to accomplish randomness
distribution rather than classical communication—the capacity for such a task can only be larger
than that for classical communication. Recall that in such a task, Alice first prepares a maximally
correlated state ΦMM ′ so that the rate C − δ of randomness distribution is equal to 1

n log2 |M |.
Alice and Bob share a given state after encoding, channel transmission, and decoding. We now
show that the regularized Holevo information bounds the rate of randomness distribution for any
protocol that has vanishing error in the asymptotic limit. As a result, the regularized Holevo
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information also upper bounds the capacity for classical communication. Consider the following
chain of inequalities:

log |M | = I
(
M ;M ′

)
Φ

(20)

≤ I
(
M ;M ′

)
ω

+ f(n, ε) (21)

≤ I (M ;Bn)ω + f(n, ε) (22)

≤ χ(N⊗n) + f(n, ε). (23)

The first equality follows because the mutual information of the common randomness state ΦMM ′

is equal to n (C − δ) bits. The first inequality follows from the error criterion and by applying
the AFW inequality for quantum mutual information with f(n, ε) ≡ 6ε log |M | + 4h2(ε). This
function has the property that limε→0 limn→∞

1
nf(n, ε) = 0. The second inequality results from the

quantum data-processing inequality for quantum mutual information—recall that Bob processes
the Bn system with a quantum instrument to get the classical system M ′. Also, the quantum
mutual information is evaluated on a classical–quantum state. The final inequality follows because
this classical–quantum state has a particular distribution and choice of states, and this choice
always leads to a value of the quantum mutual information that cannot be greater than the Holevo
information of the tensor product channel N⊗n. Putting everything together, we find that

C − δ ≤ 1

n
χ(N⊗n) +

1

n
f(n, ε). (24)

Taking the limit as n → ∞ and as ε, δ → 0 then establishes that an achievable rate C necessarily
satisfies C ≤ χreg(N ), where χreg(N ) is the regularized Holevo formula.

5 Additivity

Observe that the final upper bound in (23) on the rate C is the multi-letter Holevo information
of the channel. It would be more desirable to have χ(N ) as the upper bound on C rather than
1
nχ(N⊗n) because the former is simpler, but the optimization problem set out in the latter quantity
is simply impossible to compute with finite computational resources. However, the upper bound
in (23) is the best known upper bound if we do not know anything else about the structure of
the channel, and for this reason, the best known characterization of the classical capacity is the
regularized Holevo information.

If we know that the Holevo information of the tensor product of a certain channel with itself is
additive, then there is no need for the regularization χreg(N ), and the HSW characterization reduces
to a very good one: the Holevo information χ(N ). There are many examples of channels for which
the classical capacity reduces to the Holevo information of the channel, and we detail three such
classes of examples in this section: the cq channels, the quantum Hadamard channels, and the
quantum depolarizing channels. The proof that demonstrates additivity of the Holevo information
for each of these channels depends explicitly on structural properties of each one, and there is
unfortunately not much to learn from these proofs in order to say anything about additivity of the
Holevo information of general quantum channels. Nevertheless, it is good to have some natural
channels for which we can compute their classical capacity, and it is instructive to examine these
proofs in detail to understand what it is about each channel that makes their Holevo information
additive.
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Figure 1: This figure displays the scenario for determining whether the Holevo information of two
quantum channels N1 and N2 is additive. The question of additivity is equivalent to the possibility
of quantum correlations being able to enhance the Holevo information of two quantum channels.
The result proved in Theorem 1 is that the Holevo information is additive for the tensor product
of an entanglement-breaking channel and any other quantum channel, so that quantum correla-
tions cannot enhance the Holevo information in this case. This is perhaps intuitive because an
entanglement-breaking channel destroys quantum correlations in the form of quantum entangle-
ment.

The Holevo information of a quantum channel is generally not additive (by no means is this ob-
vious!). The question of additivity for this case is not whether classical correlations can enhance
the Holevo information, but it is rather whether quantum correlations can enhance it. That is,
Alice can choose an ensemble of the form {pX(x), ρxA1A2

} for input to two uses of the quantum
channel. The conditional density operators ρxA1A2

can be entangled and these quantum correlations
can potentially increase the Holevo information.

The question of additivity of the Holevo information of a quantum channel was a longstanding open
conjecture in quantum information theory—many researchers thought that quantum correlations
would not enhance it and that additivity would hold. But recent research has demonstrated a
counterexample to the additivity conjecture, and perhaps unsurprisingly in hindsight, this coun-
terexample exploits maximally entangled states to demonstrate superadditivity (see Section ??).
Figure 1 displays the scenario corresponding to the question of additivity of the Holevo information.

Additivity of Holevo information may not hold for all quantum channels, but it is possible to prove
its additivity for certain classes of quantum channels. One such class for which additivity holds is
the class of entanglement-breaking channels, and the proof of additivity is perhaps the simplest for
this case.

Theorem 1 (Additivity for Entanglement-Breaking Channels). Suppose that a quantum channel
NEB is entanglement breaking and another channelM is arbitrary. Then the Holevo information χ(NEB⊗
M) of the tensor-product channel NEB⊗M is the sum of the individual Holevo informations χ(NEB)
and χ(M):

χ(NEB ⊗M) = χ(NEB) + χ(M). (25)

Proof. The trivial inequality χ(NEB⊗M) ≥ χ(NEB) +χ(M) holds for any two quantum channels
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NEB andM because we can choose the input ensemble on the left-hand side to be a tensor product
of the ones that individually maximize the terms on the right-hand side.

We now prove the non-trivial inequality χ(NEB ⊗M) ≤ χ(NEB) + χ(M) that holds when NEB is
entanglement breaking. Let ρXB1B2 be a state that maximizes the Holevo information χ(NEB⊗M),
where

ρXB1B2 ≡ (NEB
A1→B1

⊗M)(ρXA1A2), (26)

ρXA1A2 ≡
∑
x

pX(x)|x〉〈x|X ⊗ ρxA1A2
. (27)

The action ofNEB
A1→B1

is to break entanglement. Let ρXB1A2 be the state after only the entanglement-

breaking channel NEB
A1→B1

acts. We can write this state as follows:

ρXB1A2 ≡ NEB
A1→B1

(ρXA1A2) (28)

=
∑
x

pX(x)|x〉〈x|X ⊗NEB
A1→B1

(ρxA1A2
) (29)

=
∑
x

pX(x)|x〉〈x|X ⊗
∑
y

pY |X(y|x) σx,yB1
⊗ θx,yA2

(30)

=
∑
x,y

pY |X(y|x)pX(x)|x〉〈x|X ⊗ σx,yB1
⊗ θx,yA2

. (31)

The third equality follows because the channel NEB breaks any entanglement in the state ρxA1A2
,

leaving behind a separable state
∑

y pY |X(y|x) σx,yB1
⊗ θx,yA2

. Then the state ρXB1B2 has the form

ρXB1B2 =
∑
x,y

pY |X(y|x)pX(x)|x〉〈x|X ⊗ σx,yB1
⊗M(θx,yA2

). (32)

Let ωXY B1B2 be an extension of ρXB1B2 where

ωXY B1B2 ≡
∑
x,y

pY |X(y|x)pX(x)|x〉〈x|X ⊗ |y〉〈y|Y ⊗ σx,yB1
⊗M(θx,yA2

), (33)

and TrY {ωXY B1B2} = ρXB1B2 . Then the following chain of inequalities holds

χ(NEB ⊗M) = I(X;B1B2)ρ (34)

= I(X;B1)ρ + I(X;B2|B1)ρ (35)

≤ χ(NEB) + I(X;B2|B1)ρ (36)

The first equality follows because we took ρXB1B2 to be a state that maximizes the Holevo informa-
tion χ(NEB ⊗M) of the tensor-product channel NEB ⊗M. The second equality is an application
of the chain rule for conditional mutual information (Property ??). The inequality follows because
the Holevo information I(X;B1)ρ is with respect to the following state:

ρXB1 ≡
∑
x

pX(x)|x〉〈x|X ⊗NEB
A1→B1

(ρxA1
), (37)

whereas the Holevo information of the channel NEB
A1→B1

is defined to be the maximal Holevo infor-
mation with respect to all input ensembles. Now let us focus on the term I(X;B2|B1)ρ. Consider
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that

I(X;B2|B1)ρ = I(X;B2|B1)ω (38)

≤ I(XB1;B2)ω (39)

≤ I(XY B1;B2)ω (40)

= I(XY ;B2)ω + I(B1;B2|XY )ω (41)

= I(XY ;B2)ω (42)

≤ χ(M). (43)

The first equality follows because the reduced state of ωXY B1B2 on systems X, B1, and B2 is equal to
ρXB1B2 . The first inequality follows from the chain rule: I(X;B2|B1) = I(XB1;B2)− I(B1;B2) ≤
I(XB1;B2). The second inequality follows from the quantum data-processing inequality. The
second equality is again from the chain rule for conditional mutual information. The third equality
is the crucial one that exploits the entanglement-breaking property. It follows by examining (33)
and observing that the state ωXY B1B2 on systems B1 and B2 is product when conditioned on
classical variables X and Y , so that the conditional mutual information between systems B1 and
B2 given both X and Y is equal to zero. The final inequality follows because ωXY B2 is a particular
state of the form needed in the maximization of χ(M).

Corollary 2. The regularized Holevo information of an entanglement-breaking quantum channel NEB

is equal to its Holevo information:

χreg(NEB) = χ(NEB). (44)

Proof. The proof of this property uses the same induction argument as in Corollary ?? and exploits
the additivity property in Theorem 1 above.

5.1 Optimizing the Holevo Information

5.1.1 Pure States are Sufficient

The following theorem allows us to simplify the optimization problem given by the Holevo in-
formation of a channel—we show that it is sufficient to consider ensembles of pure states at the
input.

Theorem 3. It is sufficient to maximize the Holevo information over only pure states:

χ(N ) = max
ρXA

I(X;B)ρ = max
τXA

I(X;B)τ , (45)

where
τXA ≡

∑
x

pX(x)|x〉〈x|X ⊗ |φx〉〈φx|A, (46)

and ρXB and τXB are the states that results from sending the A system of ρXA and τXA through
the quantum channel NA→B.
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Proof. Suppose that ρXA is any cq state input to the channel. Consider a spectral decomposition
of the states ρxA:

ρxA =
∑
y

pY |X(y|x)ψx,yA , (47)

where the states ψx,yA are pure. Then let σXY A denote the following state:

σXY A ≡
∑
x

pY |X(y|x)pX(x)|x〉〈x|X ⊗ |y〉〈y|Y ⊗ ψx,yA , (48)

so that TrY {σXY A} = ρXA. Also, observe that σXY A is a state of the form τXA with XY as the
classical system. Let σXY B denote the state that results from sending the A system through the
quantum channel NA→B. Then the following relations hold:

I(X;B)ρ = I(X;B)σ ≤ I(XY ;B)σ. (49)

The equality follows because TrY {σXY B} = ρXB and the inequality follows from the quantum
data-processing inequality. It then suffices to consider ensembles with only pure states because
the state σXY B is a state of the form τXB with the combined system XY acting as the classical
system.
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