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1 Overview

In the last lecture, we proved the entanglement concentration theorem, which states that the
entanglement concentration limit for a bipartite pure state is equal to its entropy of entanglement.

In this lecture, we discuss classical communication over quantum channels. We focus mainly on
the achievability part of the classical capacity theorem, using a relatively recent method called
sequential decoding.

2 Introduction

This lecture begins our exploration of “dynamic” information-processing tasks in quantum Shannon
theory, where the term “dynamic” indicates that a quantum channel connects a sender to a receiver
and their goal is to exploit this resource for communication. We specifically consider the scenario
where a sender Alice would like to communicate classical information to a receiver Bob, and the
capacity theorem that we prove here is one particular generalization of Shannon’s noisy channel
coding theorem from classical information theory In later chapters, we will see other generalizations
of Shannon’s theorem, depending on what resources are available to assist their communication or
depending on whether they are trying to communicate classical or quantum information. For this
reason and others, quantum Shannon theory is quite a bit richer than classical information theory.

The naive approach to communicate classical information over a quantum channel is for Alice and
Bob simply to mimic the approach used in Shannon’s noisy channel coding theorem. That is, they
select a random classical code according to some distribution px (x), and Bob performs individual
measurements of the outputs of a noisy quantum channel according to some POVM. The POVM at
the output induces some conditional probability distribution py| x (y|z), which we can in turn think
of as an induced noisy classical channel. The classical mutual information I(X;Y") of this channel
is an achievable rate for communication, and the best strategy for Alice and Bob is to optimize
the mutual information over all of Alice’s inputs to the channel and over all measurements that
Bob could perform at the output. The resulting quantity is equal to Bob’s optimized accessible
information.

If the aforementioned coding strategy were optimal, then there would not be anything much inter-
esting to say for the information-processing task of classical communication. This is perhaps one
first clue that the above strategy is not necessarily optimal. Furthermore, we know from that the
Holevo information is an upper bound to the accessible information, and this bound might prompt



us to wonder if it is also an achievable rate for classical communication, given that the accessible
information is achievable.

The main theorem of this lecture is the classical capacity theorem (also known as the Holevo—
Schumacher—Westmoreland theorem), and it states that the Holevo information of a quantum
channel is an achievable rate for classical communication. The Holevo information is easier to ma-
nipulate mathematically than is the accessible information. The proof of its achievability demon-
strates that the aforementioned strategy is not optimal, and the proof also shows how performing
collective measurements over all of the channel outputs allows the sender and receiver to achieve the
Holevo information as a rate for classical communication. Thus, this strategy fundamentally makes
use of quantum-mechanical effects at the decoder and suggests that such an approach is necessary
to achieve the Holevo information. Although this strategy exploits collective measurements at the
decoder, it does not make use of entangled states at the encoder. That is, the sender could input
quantum states that are entangled across all of the channel inputs, and this encoder entanglement
might potentially increase classical communication rates.

One major drawback of the classical capacity theorem (also the case for many other results in
quantum Shannon theory) is that it only demonstrates that the Holevo information is an achievable
rate for classical communication—the converse theorem is a “multi-letter” converse, meaning that
it might be necessary in the general case to evaluate the Holevo information over a potentially
infinite number of uses of the channel. The multi-letter nature of the capacity theorem implies that
the optimization task for general channels is intractable and thus further implies that we know
very little about the actual classical capacity of general quantum channels. Now, there are many
natural quantum channels such as the depolarizing channel and the dephasing channel for which the
classical capacity is known (the Holevo information becomes “single-letter” for these channels), and
these results imply that we have a complete understanding of the classical information-transmission
capabilities of these channels. All of these results have to do with the additivity of the Holevo
information of a quantum channel, which is discussed in the book.

We mentioned that the Holevo—Schumacher—Westmoreland coding strategy does not make use of
entangled inputs at the encoder. But a natural question is to wonder whether entanglement at the
encoder could boost classical information-transmission rates, given that it is a resource for many
quantum protocols. This question was known as the additivity conjecture and went unsolved for
many years, but recently Hastings offered a proof that entangled inputs can increase communication
rates for certain channels. Thus, for these channels, the single-letter Holevo information is not
the proper characterization of classical capacity (however, this is not to say that there could be
some alternate characterization of the classical capacity other than the Holevo information which
would be single-letter). These recent results demonstrate that we still know little about classical
communication in the general case and furthermore that quantum Shannon theory is an active area
of research.

3 Naive Approach: Product Measurements

We begin by discussing in more detail the most naive strategy that a sender and receiver can exploit
for the transmission of classical information over many uses of a quantum channel. Figure [1| depicts
this naive approach. This first approach mimics certain features of Shannon’s classical approach
without making any use of quantum-mechanical effects. Alice and Bob agree on a codebook be-



Alice | Bob

Figure 1: The most naive strategy for Alice and Bob to communicate classical information over
many independent uses of a quantum channel. Alice wishes to send some message M and selects
some tensor product state to input to the channel conditional on the message M. She transmits
the codeword over the channel, and Bob then receives a noisy version of it. He performs individual
measurements of his quantum systems and produces some estimate M’ of the original message
M. This scheme is effectively a classical scheme because it makes no use of quantum-mechanical
features such as entanglement.

forehand, where each classical codeword z"(m) in the codebook corresponds to some message m
that Alice wishes to transmit. Alice can exploit some alphabet {p,} of density operators to act as
input to the quantum channel. That is, the quantum codewords are of the form

Pzn(m) = Pxy(m) ® Pxa(m) Q- ® Pz, (m)- (1)

Bob then performs individual measurements of the outputs of the quantum channel by exploiting
some POVM {A,}. This scheme induces the following conditional probability distribution:

PY1-~~Yn\X1--~Xn(y1 e ynlzi(m) -z (m))

=Tr{Ay, ® QA N QN) (Prym) @+ ® Papi(m)) } (2)
=Tr{(Ay, @ @Ay, ) N (Pry(m)) @ ON (P, (m)) ) } (3)
= [T {8V (i) } (4)

i=1

which we immediately realize is many i.i.d. instances of the following classical channel:

PY|X(?J\$) = Tr {AyN(p2)} - (5)

Thus, if they exploit this scheme, the optimal rate at which they can communicate is equal to the
following expression:

I = I(X:Y 6
aCC(N) {pngli,/\} (X;Y), (6)

where the maximization of the classical mutual information is over all input distributions, all input
density operators, and all POVMs that Bob could perform at the output of the channel. This
information quantity is known as the accessible information of the channel.

The above strategy is not necessarily an optimal strategy if the channel is truly a quantum channel—
it does not make use of any quantum effects such as entanglement. A first simple modification of the
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Figure 2: A coding strategy that can outperform the previous naive strategy, simply by making
use of entanglement at the encoder and decoder.

protocol to allow for such effects would be to consider coding for the tensor product channel N @ N
rather than the original channel. The input states would be entangled across two channel uses, and
the output measurements would be over two channel outputs at a time. In this way, they would be
exploiting entangled states at the encoder and collective measurements at the decoder. Figure
illustrates the modified protocol, and the rate of classical communication that they can achieve
with such a strategy is %Iacc (N ®@N). This quantity is always at least as large as I,..(N') because
a special case of the strategy for the tensor product channel N'® AN is to choose the distribution
px(x), the states p,, and the POVM A to be tensor products of the ones that maximize Iyc.(N).
We can then extend this construction inductively by forming codes for the tensor product channel
Nk (where k is a positive integer), and this extended strategy achieves the classical communication
rate of %Iacc (/\/ ®k) for any finite k. These results then suggest that the ultimate classical capacity
of the channel is the regularization of the accessible information of the channel:

Leg(N) = lim %1 (wer). (7)

k—o00

The regularization of the accessible information is intractable for general quantum channels, but the
optimization task could simplify immensely if the accessible information is additive. In this case,
the regularized accessible information Ieq(N) would be equivalent to the accessible information
Lce(N). However, even if the quantity is additive, the optimization could still be difficult to
perform in practice. A simple upper bound on the accessible information is the Holevo information
X(N) of the channel, defined as

X(N) = mgLXI(X;B), (8)

where the maximization is over classical-quantum states pxp of the following form:

pxp =Y px(@)e)(z]x @ Naop@Wh). (9)

The Holevo information is a more desirable quantity to characterize classical communication over
a quantum channel because it is always an upper bound on the accessible information and because
Theorem ?7 states that it is sufficient to consider pure states %, at the channel input for maximizing
the Holevo information.



Alice | Bob
A N | B

D EL

.
N
> eee >
los)] .:. wy]

R
N

Figure 3: The most general protocol for classical communication over a quantum channel. Alice
selects some message M and encodes it as a quantum codeword for input to many independent
uses of the noisy quantum channel. Bob performs some POVM over all of the channel outputs to
determine the message that Alice transmits.

Thus, a natural question to ask is whether Alice and Bob can achieve the Holevo information rate,
and the main theorem of this chapter states that it is possible to do so. The resulting coding
scheme bears some similarities with the techniques in Shannon’s noisy channel coding theorem, but
the main difference is that the decoding POVM is a collective measurement over all of the channel
outputs.

4 The Information-Processing Task

4.1 Classical Communication

We now discuss the most general form of the information-processing task and give the criterion for
a classical communication rate C' to be achievable—i.e., we define an (n,C' — 4, €) code for classical
communication over a quantum channel. Alice begins by selecting some classical message m that
she would like to transmit to Bob—she selects from a set of messages {1,...,|M|}. Let M denote
the random variable corresponding to Alice’s choice of message, and let | M| denote its cardinality.
She then prepares some state p'),, as input to the many independent uses of the channel-—the input
systems are n copies of the channel input system A’. She transmits this state over n independent
uses of the channel N, and the state at Bob’s receiving end is

NE™ (plim).- (10)

Bob has some decoding POVM {A,,} that he can exploit to determine which message Alice trans-
mits. Figure [3]depicts such a general protocol for classical communication over a quantum channel.

Let M’ denote the random variable for Bob’s estimate of the message. The probability that he
determines the correct message m is as follows:

Pr{M =m|M' =m} = Tr {AnN®" (o)}, (11)



and thus the probability of error for a particular message m is

pe(m) =1—Pr{M =m|M =m} (12)
T {7 An) N ()} (13)

The maximal probability of error for any coding scheme is then
Pe = max pe(m). (14)
The rate C of communication is .
C= - logy |IM| + 0, (15)

where 0 is some arbitrarily small positive number, and the code has ¢ error if p} < e. A rate C
of classical communication is achievable if there exists an (n,C — d,e) code for all §,e > 0 and
sufficiently large n.

5 Sequential Decoding

In this section (taken from arXiv:1202.0518), we describe the operation of a sequential decoder that
can reliably recover classical information encoded into a pure state ensemble. We follow with a
full error analysis, demonstrating that the scheme achieves the Holevo rate for pure-state channels.
Suppose that a classical-quantum channel of the form

& = |bx)

connects a sender Alice to a receiver Bob. For our purposes here, it does not matter whether the
classical input z is discrete or continuous.

Theorem 1. Let x — |¢,) be a classical-quantum channel and let p =Y px(x)|pz)(pz| for some
distribution px (x). Then the rate H(p) bits per channel use is achievable for communication over
this channel by having the receiver employ a sequential decoding strategy.

Proof. We break the proof into several steps.

Codebook Construction. Before communication begins, Alice and Bob agree upon a codebook.
We allow them to select a codebook randomly according to the distribution px(z). So, for every
message m € M = {1,...,2"%} generate a codeword z"(m) = x1(m) - --z,(m) randomly and
independently according to

pxn (") = [ [ px (@)
i=1

Sequential Decoding. Transmitting the codeword z™(m) through n uses of the channel z — |¢,.)
leads to the following quantum state at Bob’s output:

Upon receiving the quantum codeword |@yn(n)), Bob performs a sequence of binary-outcome
quantum measurements to determine the classical codeword z™(m) that Alice transmitted. He



first “asks,” “Is it the first codeword?” by performing the measurement {|¢yn(1))(Pzn(1)l; 1 en _
|pan (1)) (Pan(1yl}- If he receives the outcome “yes,” then he performs no further measurements and
concludes that Alice transmitted the codeword z™ (1). If he receives the outcome “no,” then he
performs the measurement {|¢n(2)) (Pgn(2)], 1" = [dgn (2)) (Pan(2)|} to check if Alice sent the second
codeword. Similarly, he stops if he receives “yes,” and otherwise, he proceeds along similar lines.

Error Analysis. We now provide an error analysis demonstrating that this scheme works well,
i.e., the word error goes to zero as n — oo, as long as R < H(p). In general, if Alice transmits
the m'" codeword, then the probability for Bob to decode correctly with this sequential decoding
strategy is as follows:

Tr {¢x"(m)ﬂm—1 c T G gy Iy - ﬂm—l¢z"(m)} ;
where we make the abbreviations
Pan(m) = |Ban (m)) (D (m) |
I = 1°" — | D () ) {Pam (4 |-
So the probability that Bob makes an error when decoding the m* codeword is just
1-Tr {%n(m)ﬁmq RS I OISR ﬁmflqbac"(m)} -

To further simplify the error analysis, we consider the expectation of the above error probability,
under the assumption that Alice selects a message uniformly at random according to a random
variable M and that the codeword z" is selected at random according to the distribution pxn(z™)
(as described above):

1-— X7ILE;MTI‘ {(Z)X"(M)]jM—l tee ﬂ1¢X"(M)ﬂ1 ce ﬂM—l} . (16)

For the rest of the proof, it is implicit that the expectation E is with respect to random variables X™
and M. Our first observation is that, for the purposes of our error analysis, we can “smooth” the
channel " — ¢,n, by imagining instead that we are coding for a projected version of the channel
IT ¢5n 11, where IT is the typical projector for the average state p = Y px(x)¢d,. Doing so simplifies
the error analysis by cutting off large eigenvalues that reside outside of the high-probability typical
subspace. Furthermore, we expect that doing so should not affect the error analysis very much
because most of the probability tends to concentrate in this subspace anyway. That we can do so
follows from the fact that

1=ETr {¢xn)}
= ETr {Tlgxnan) } + ETr {gxnqar) |
— ETr {Txna) I} + Tt {ﬁEngn(M)}
= ETr {xn I} + Tr {ﬂp®"} ,
where II = I — II. Furthermore, we know that
ETr {d’X”(M)ﬂMfl s T xen (I -+ 'ﬂM71}
— ETr {ﬁl T 1dxnan [T -+ ﬁlgz,Xn(M)}

> ETr {ﬂl cTp—1dxn(anar—1 - ﬂ1H¢X"(M)H} — E ||¢xn(ary — TdxnanIT]|

1 Y



where the inequality follows from the following lemma;:

Lemma 2. Let p and o be such that 0 < p,o and Tr{p}, Tr{c} < 1. Let A be such that 0 < A < 1.
Then
Te [Ag] < T [Ao] + lo — o]l (17)

Proof. This follows from a variational characterization of trace distance as the distinguishability of
the states under an optimal measurement M: ||p — o||; = 2maxo<yr<; Tr [M(p — 0)]. O

We need another lemma, known as the Gentle Operator Lemma:

Lemma 3 (Gentle Operator Lemma for Ensembles). Given an ensemble {px(x), p.} with expected
density operator p = > px(z)ps, suppose that an operator A such that I > A > 0 succeeds with
high probability on the state p:

Tr{Ap}>1—c.

Then the subnormalized state \/pr\/K is close in expected trace distance to the original state py:

e { [V V] <2

Using the above observations and the facts that

E||¢xn ) — Toxnapll|), < 2V, (18)
Tr {ﬂp®”} <e, (19)

for all ¢ > 0 whenever n is sufficiently large (these are from the properties of typicality and the
Gentle Operator Lemma, we obtain the following upper bound on :

ETr {H¢X"(M)H} — ETr {¢X”(M)ﬂM—1 .- ﬁll'I(l)Xn(M)Hf[l ce ﬂM—1¢X”(M)} +e+ 2\/5

(In the next steps, we omit the terms ¢ 4+ 2,/¢ as they are negligible.) The most important
step of this error analysis is to apply Pranab Sen’s non-commutative union bound (Lemma 3 of
arXiv:1109.0802), which holds for any subnormalized state o (¢ > 0 and Tr {o} < 1) and sequence
of projectors Iy, ..., Ily:

N
Tr{o} — Tr{ly - -Tholly---TIx} < 2,| > Tr{(I -TL) o}
=1

For our case, we take g xnnp)Il as o and ¢xn(ar), ﬁM_l, e I1; as the sequence of projectors.
Applying Sen’s bound and concavity of the square root function leads to the following upper bound
on (77?):

M-1

2, | ETr {ﬁMH¢Xn(M)H} +E S T {gxn(p Mo xn(anIl}
=1



where Iy, = I®" — dxn(ary and Gxn(y = I — II;. We now bound each of the above two terms
individually. For the first term, consider that

ETr{ﬂanan(M H}
< ETr {HquXn } + B |¢xn () — T xnan ]|
< 24/e.

where the last inequality follows from applying and because

Tr {f{quXn(M)} = Tr {(I®" = dxn(an) dxn(an) }
—0.

For the second term, consider that

M-—1
E Y Tr{dxn@léxnonll}
=1
<Ey Z ExnTr {¢xn (i)l xnany I}
i#M
=B ) Tr{Exn {dxnp } TExn {dxnan)} 1T}
i#M
— Z Tr {p®nnp®n1—[}
i#M
n[H(p)— Z Tr {p®nH}
z;éM
< 9~ nlH(p)- !M!

The first inequality follows by just adding in all of the future terms i > M to the sum. The first
equality follows because the random variables X" (i) and X" (M) are independent, due to the way
that we selected the code (each codeword is selected independently of a different one). The second
equality follows from averaging the state ¢ x» with respect to the distribution px~, and we drop
the expectation Ej,; because the quantities inside the trace no longer have a dependence on the
message M. The second inequality follows from the entropy bound for the eigenvalues of p®" in
the typical subspace. The final inequality follows because Tr {p®"II} < 1. Thus, the overall upper
bound on the error probability with this sequential decoding strategy is

g = e+2\@+2\/2\/§+2*n[H(p)75] M|,

which we can make arbitrarily small by choosing |M| = 27#()=20] and n sufficiently large. The next
arguments are standard. We proved a bound on the expectation of the average probability, which
implies there exists a particular code that has arbitrarily small average error probability under the
same choice of |M| and n. For this code, we can then eliminate the worst half of the codewords,
ensuring that the error probability of the resulting code is no larger than 2¢’. Furthermore, it should
be clear that it is only necessary for the sequential decoder to process the remaining codewords
when decoding messages. t



6 Sequential Decoding for Optical Communication

We now provide a physical realization of the sequential decoding strategy in the context of optical
communications. In this setting, we suppose that a lossy bosonic channel, specified by the following
Heisenberg relations, connects Alice to Bob:

b= ma++/1—ne, (20)

where a, B, and ¢é are the respective field operators for Alice’s input mode, Bob’s output mode, and
an environmental input mode (assumed to be in its vacuum state). The transmissivity n € [0, 1]
is the fraction of Alice’s input photons that make it to Bob on average. We assume that Alice
is constrained to using mean photon number Ng per channel use. The strategy for achieving the
classical capacity of this channel is for Alice to induce a classical-quantum channel, by selecting
a € C and preparing a coherent state |a) at the input of the channel in . A coherent state in
quantum optics is defined as the following coherent superposition of photon number states:

|a>:exp{"§“’2}gj%n>.

It is often described as being the ideal state of a single mode of the light field output from a laser.
The most useful property of coherent states for classical communication over a pure-loss bosonic
channel is that it retains its purity. That is, if Alice inputs the state |«) to the pure-loss bosonic
channel with transmissivity 7, then the state output for Bob and Eve is

[v/ia) @ [v/1=na),

so that we recover a pure coherent state for Bob when tracing over the second mode. The resulting
induced classical-quantum channel to Bob is of the following form:

a — |[y/na).

By choosing the distribution px (z) in Theoremto be an isotropic, complex Gaussian with variance
Ng:

PN () = (1/7Ng) exp {— |a]2/NS} ,
we have that g (nNg) is an achievable rate for classical communication, where
g(x) = (z+1)log(x + 1) — zlogx.

The quantity g (nNs) is the entropy of the average state of the ensemble {py, (o), |\/na)}:

/ 2 pg () [V (yial,

which is a thermal state with mean photon number nNg. Each quantum codeword selected from
the ensemble {pn, (@), |@)} has the following form:

@ (m)) = |ea(m)) @ - - @ an(m)) .

We assume n = 1 above and for the rest of this section without loss of generality. Thus, the
sequential decoder consists of measurements of the following form for all m € M:

{le™(m)) (@™ (m)[, I%" —|a™(m)) (a"(m)|} . (21)

10



Observing that
| (m)) = D (a1(m)) @ - ® D (an(m)) [0)"

where D (a) = exp {osz — a*&} is the unitary “displacement” operator from quantum optics and
|0)®™ is the n-fold tensor product vacuum state, we see that that the decoder can implement the
measurement in in three steps:

1. Displace the n-mode codeword state by
D(=on(m)) ® -+ @ D (—an(m)),
by employing highly asymmetric beam-splitters with a strong local oscillator [?].

2. Perform a “vacuum-or-not” measurement of the form
{10) of®™, 1™ —10) (0"} .
If the vacuum outcome occurs, decode as the m'" codeword. Otherwise, proceed.

3. Displace by D (a1(m)) ® - - ® D (an(m)) with the same method as in Step 1.

The receiver just iterates this strategy for every codeword in the codebook, and Theorem (1| states
this strategy is capacity-achieving.

7 Non-Commutative Union Bound Proof

Theorem 4 (Non-Commutative Union Bound). Let o be such that o > 0 and Tr{c} < 1. Let II;,
..., y be Hermitian projectors. Then

L
Tr{o} — Tr{ll - - Iolly - - T} <2, | > Tr{(I - IL)o}. (22)
=1

Proof. Tt suffices to prove the following bound for a vector |¢) such that ||[s)|5 < 1:

L
)13 = 1Tz - Thfe) I3 < 24 | > (I —T0) [4)]]3. (23)
i=1
This is because
1) 15 = Te{|) (w1}, (24)
ITTL -~ T [h) |3 = Tr{TIg - - Ty fgp) ([T, - - - TIL }, (25)
I = T05) [9)[15 = Te{ (I = TL;)[¢b) (b}, (26)

and any o satisfying the conditions given can be written as a convex combination o = > p(2)[1).) (15|
where p(z) is a probability distribution and each [¢,) satisfies |||1,)[|3 < 1. Then follows from
by concavity of the square root function. So we now focus on proving .

11



We begin by showing that

L
) =Tz - I fg)l3 < Z (= 10) [9)]I3 - (27)

To see this, consider that

) = Tlp - T |) |5 = [1( = ) [) 15 + T (|) = Tpo - Thje))|5 (28)
< = L) [ 5 + [[[) = T -+ Th[e)]3 (29)

L
<D =) )13 (30)

=1

The first equality follows from Pythagorean’s theorem. The first inequality follows because a
projection cannot increase the norm of a vector. The last inequality is by induction. Now we take
the square root of :

L
) =T - Ty < 4| D I =1L [)]]5, (31)
i=1

from which we can conclude the following by the triangle inequality:

L
)l = Iz - T )]y < o[ DI =) [9)]]- (32)
1=1

Then rearrange this as follows:

L
)l = | D1 =) [)l5 < I - ) (33)
i=1
and square both sides to get
2
L
P ZH (1 = T0) [9)]13
L L
= )5 =24 DI =) [)]l5 + > I =0 [9)]13 (34)
i=1 i=1
< Uz - )l (35)
This then implies by dropping the non-negative term ZZ'L:1 (I = T1;) |4)|I3. O
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