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1 Overview

In the last lecture, we developed Schumacher quantum data compression. The essential idea for the
achievability part was that performing a typical subspace measurement on many copies of the same
state does not disturb it too much, while at the same time projecting the state into a subspace
which is exponentially smaller than the whole Hilbert space. The converse part relied on quantum
data processing.

In this lecture, we develop a protocol known as entanglement concentration, which allows for
concentrating many copies of the same pure bipartite state to some number of copies of maximally
entangled ebits. We will see that the optimal rate of conversion is given by a quantity known as
the entropy of entanglement.

2 Introduction

Entanglement is one of the most useful resources in quantum information processing. If a sender
and receiver share noiseless entanglement in the form of maximally entangled states, then we
previously showed how they can teleport quantum bits between each other with the help of classical
communication, or they can double the capacity of a noiseless qubit channel for transmitting
classical information. We will see further applications later on in which they can exploit noiseless
entanglement to assist in the transmission of classical or quantum data over a noisy quantum
channel.

Given the utility of maximal entanglement, a reasonable question is to ask what a sender and
receiver can accomplish if they share pure entangled states that are not maximally entangled.
In the quantum Shannon-theoretic setting, we make the further assumption that the sender and
receiver can share many copies of these pure entangled states. We find out in this chapter that
they can “concentrate” these non-maximally entangled states to maximally entangled ebits, and
the optimal rate at which they can do so in the asymptotic limit is equal to the “entropy of
entanglement” (the von Neumann entropy of half of one copy of the original state). Entanglement
concentration is thus another fundamental task in noiseless quantum Shannon theory, and it gives
a different operational interpretation to the von Neumann entropy.

Entanglement concentration is perhaps complementary to Schumacher compression in the sense that
it gives a firm quantum information-theoretic interpretation of the term “ebit” (just as Schumacher
compression did for the term “qubit”), and it plays a part in demonstrating how the entropy of
entanglement is the unique measure of entanglement for pure bipartite states. Despite the similarity
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to Schumacher compression in this respect, entanglement concentration is a fundamentally different
protocol, and we will see that these two protocols are not interchangeable. That is, exploiting the
Schumacher compression protocol for the task of entanglement concentration fails at accomplishing
the goal of entanglement concentration, and vice versa.

The technique for proving that the von Neumann entropy is an achievable rate for entanglement
concentration exploits the method of types for classical and quantum typicality, respectively (the
most important property is one which states that the exponentiated entropy is a lower bound on
the size of a typical type class). In hindsight, it is perhaps surprising that a typical type class is
exponentially large in the large n limit (on the same order as the typical set itself), and we soon
discover the quantum Shannon-theoretic consequences of this result.

We begin this chapter by discussing a simple example of entanglement concentration for a finite
number of copies of a state. Section 4 then details the information-processing task that entangle-
ment concentration attempts to accomplish, and Section 5 proves both the direct coding theorem
and the converse theorem for entanglement concentration. We then discuss how shared randomness
concentration is the closest classical analog of the entanglement concentration protocol. Finally,
we discuss the differences between Schumacher compression and entanglement concentration, espe-
cially how exploiting one protocol to accomplish the other’s information-processing task results in
a failure of the intended goal.

3 An Example of Entanglement Concentration

A simple example illustrates the main idea underlying the concentration of entanglement. Consider
the following partially entangled state:

|Φθ〉AB ≡ cos(θ) |00〉AB + sin(θ)|11〉AB, (1)

where θ is some parameter such that 0 < θ < π/2. The Schmidt decomposition guarantees that the
above state is the most general form for a pure bipartite entangled state on qubits. Now suppose
that Alice and Bob share three copies of the above state. We can rewrite the three copies of the
above state with some straightforward algebra:

|Φθ〉A1B1
|Φθ〉A2B2

|Φθ〉A3B3

= cos3(θ)|000〉A|000〉B + sin3(θ)|111〉A|111〉B (2)

+ cos(θ) sin2(θ) (|110〉A|110〉B + |101〉A|101〉B + |011〉A|011〉B)

+ cos2(θ) sin(θ) (|100〉A|100〉B + |010〉A|010〉B + |001〉A|001〉B)

= cos3(θ)|000〉A|000〉B + sin3(θ)|111〉A|111〉B (3)

+
√

3 cos(θ) sin2 (θ)
1√
3

(|110〉A|110〉B + |101〉A|101〉B + |011〉A|011〉B)

+
√

3 cos2(θ) sin (θ)
1√
3

(|100〉A|100〉B + |010〉A|010〉B + |001〉A |001〉B) ,

where we relabel all of the systems on Alice and Bob’s respective sides as A ≡ A1A2A3 and
B ≡ B1B2B3. Observe that the subspace with coefficient cos3(θ) whose states have zero “ones” is
one-dimensional. The subspace whose states have three “ones” is also one-dimensional. But the
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subspace with coefficient cos (θ) sin2(θ) whose states have two “ones” is three-dimensional, and the
same holds for the subspace whose states each have one “one.”

A protocol for entanglement concentration in this scenario is then straightforward. Alice performs
a projective measurement consisting of the operators Π0, Π1, Π2, Π3 where

Π0 ≡ |000〉〈000|A, (4)

Π1 ≡ |001〉〈001|A + |010〉〈010|A + |100〉〈100|A, (5)

Π2 ≡ |110〉〈110|A + |101〉〈101|A + |011〉〈011|A, (6)

Π3 ≡ |111〉〈111|A. (7)

The subscript i of the projection operator Πi corresponds to the Hamming weight of the basis states
in the corresponding subspace. Bob can perform the same “Hamming weight” measurement on his
side. With probability cos6(θ) + sin6(θ), the procedure fails because it results in |000〉A|000〉B or
|111〉A|111〉B which is not a maximally entangled state. But with probability 3 cos2 (θ) sin4(θ), the
state is in the subspace with Hamming weight two, and it has the following form:

1√
3

(|110〉A|110〉B + |101〉A|101〉B + |011〉A|011〉B) , (8)

and with probability 3 cos4(θ) sin2 (θ), the state is in the subspace with Hamming weight one, and
it has the following form:

1√
3

(|100〉A|100〉B + |010〉A|010〉B + |001〉A|001〉B) . (9)

Alice and Bob can then perform local operations on their respective systems to rotate either of
these states to a maximally entangled state with Schmidt rank three:

1√
3

(|0〉A|0〉B + |1〉A|1〉B + |2〉A |2〉B) . (10)

The simple protocol outlined above is the basis for the entanglement concentration protocol, but
it unfortunately fails with a non-negligible probability in this case. On the other hand, if we allow
Alice and Bob to have a large number of copies of a pure bipartite entangled state, the probability
of failing becomes negligible in the asymptotic limit due to the properties of typicality, and each
type class subspace contains an exponentially large maximally entangled state. The proof of the
direct coding theorem in the book makes this intuition precise.

4 The Information-Processing Task

We first detail the information-processing task that entanglement concentration sets out to accom-
plish. An (n,E, ε) entanglement concentration protocol consists of just one step of processing. Alice
and Bob begin with many copies (|ϕ〉AB)⊗n of a pure bipartite, entangled state |ϕ〉AB. Alice and
Bob each then perform local quantum channels EAn→Â and FBn→B̂ in an attempt to concentrate
the original state (|ϕ〉AB)⊗n to a maximally entangled state:

ωÂB̂ ≡
(
EAn→Â ⊗FBn→B̂

)
(ϕAnBn) . (11)
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Figure 1: The most general protocol for entanglement concentration. Alice and Bob begin with
many copies of some pure bipartite state |ϕ〉AB. They then perform local operations to concentrate
this state to a maximally entangled state.

The protocol has ε error if the final state ωÂB̂ is ε-close to a maximally entangled state |Φ〉ÂB̂:

1

2

∥∥ωÂB̂ − ΦÂB̂

∥∥
1
≤ ε, (12)

where

|Φ〉ÂB̂ ≡
1√
D

D−1∑
i=0

|i〉Â|i〉B̂, (13)

and the rate E of ebit extraction is

E =
1

n
log2(D), (14)

where δ is some small positive number.

We say that a particular rate E of entanglement concentration is achievable if there exists an
(n,E − δ, ε) entanglement concentration protocol for all ε ∈ (0, 1), δ > 0, and sufficiently large n.
The entanglement concentration limit for |ϕ〉AB is equal to the supremum of all achievable rates.
Figure 1 displays the operation of a general entanglement concentration protocol.

5 The Entanglement Concentration Theorem

We first state the entanglement concentration theorem and then prove it below in two parts (the
direct coding theorem and the converse theorem).

Theorem 1 (Entanglement Concentration). Let |ϕ〉AB ∈ HA ⊗ HB be a pure bipartite state.
The entanglement concentration limit for |ϕ〉AB is equal to the entropy of entanglement, i.e., the
quantum entropy H (A)ϕ.

5.1 The Direct Coding Theorem

We only prove this for a particular case to illustrate the main idea and point to the book for a full
proof.

4



Generalizing the procedure outlined above to an arbitrary number of copies is straightforward.
Suppose Alice and Bob share n copies of the partially entangled state |Φθ〉. We can then write the
state as follows:

|Φθ〉AnBn =
n∑
k=0

√(
n

k

)
cosn−k(θ) sink(θ)

 1√(
n
k

) ∑
x : w(x)=k

|x〉An |x〉Bn

 , (15)

where w(x) is the Hamming weight of the binary vector x. Alice performs a “Hamming weight”
measurement whose projective operators are as follows:

Πk =
∑

x : w(x)=k

|x〉〈x|An , (16)

and the Schmidt rank of the maximally entangled state that they then share is
(
n
k

)
.

We can give a rough analysis of the performance of the above protocol when n becomes large by
exploiting Stirling’s approximation (we just need a handle on the term

(
n
k

)
for large n). Recall that

Stirling’s approximation is n! ≈
√

2πn (n/e)n, and this gives(
n

k

)
=

n!

k!n− k!
(17)

≈
√

2πn (n/e)n√
2πk (k/e)k

√
2π (n− k) ((n− k) /e)n−k

(18)

=

√
n

2πk (n− k)

nn

(n− k)n−k kk
(19)

= poly (n)

(
n− k
n

)−(n−k)(k
n

)−k
(20)

= poly (n) 2n[−((n−k)/n) log((n−k)/n)−(k/n) log(k/n)] (21)

= poly (n) 2nh2(k/n), (22)

where h2 is the binary entropy function and poly(n) indicates a term at most polynomial in n.
When n is large, the exponential term 2nh2(k/n) dominates the polynomial

√
n/2πk (n− k), so that

the polynomial term begins to behave merely as a constant. So, the protocol is for Alice to perform
a typical subspace measurement with respect to the distribution

(
cos2(θ), sin2(θ)

)
, and the state

then collapses to the following one with high probability:

1

N

n∑
k=0 :

|k/n−sin2(θ)| ≤ δ,

|(n−k)/n−cos2(θ)| ≤ δ

√(
n

k

)
cosn−k(θ) sink(θ)

 1√(
n
k

) ∑
x : w(x)=k

|x〉An |x〉Bn

 , (23)

where N is an appropriate normalization constant. Alice and Bob then both perform a Hamming
weight measurement and the state collapses to a state of the form:

1√
poly (n) 2nh2(k/n)

∑
x : w(x)=k

|x〉An |x〉Bn , (24)
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depending on the outcome k of the measurement. The above state is a maximally entangled state
with Schmidt rank poly(n) 2nh2(k/n), and it follows that

h2 (k/n) ≥ h2

(
cos2(θ)

)
− δ, (25)

from the assumption that the state first projects into the typical subspace. Alice and Bob can
then perform local operations to rotate this state to approximately nh2

(
cos2(θ)

)
ebits. Thus, this

procedure concentrates the original non-maximally entangled state to ebits at a rate equal to the
entropy of entanglement of the state |Φθ〉AB in (1). The above proof is a bit rough, and it applies
only to entangled qubit systems in a pure state. The direct coding theorem in the book generalizes
this proof to pure entangled states on d-dimensional systems.

5.2 The Converse Theorem

We now prove the converse theorem for entanglement concentration, i.e., that the entanglement
concentration limit for |ϕ〉AB does not exceed H(A)ϕ. Alice and Bob begin with many copies of the
pure state |ϕ〉AB. In the most general protocol given in Figure 1, they both perform local quantum
channels EAn→Â and FBn→B̂ to produce the following state:

ωÂB̂ ≡
(
EAn→Â ⊗FBn→B̂

)
(ϕAnBn) . (26)

If the protocol is successful, then the actual state ωÂB̂ is ε-close to the ideal maximally entangled
state ΦÂB̂:

1

2

∥∥ωÂB̂ − ΦÂB̂

∥∥
1
≤ ε. (27)

Consider the following chain of inequalities:

2n (E − δ) = 2H(Â)Φ (28)

= H(Â)Φ +H(B̂)Φ −H(ÂB̂)Φ (29)

= I(Â; B̂)Φ (30)

≤ I(Â; B̂)ω + f(n, ε) (31)

≤ I(An;Bn)ϕ⊗n + f (n, ε) (32)

= H(An)ϕ⊗n +H(Bn)ϕ⊗n −H(AnBn)ϕ⊗n + f(n, ε) (33)

= 2nH(A)ϕ + f(n, ε). (34)

The first equality follows because the entropy of entanglement H(Â)Φ of a maximally entangled
state ΦÂB̂ is equal to the logarithm of its Schmidt rank. The next equality follows because H(B̂)Φ =

H(Â)Φ and H(ÂB̂)Φ = 0 for a pure bipartite entangled state. The third equality follows from the
definition of quantum mutual information. The first inequality follows from applying the AFW
inequality for quantum mutual information to (27) with f (n, ε) ≡ 3εnE + 2(1 + ε)h2(ε/[1 + ε]).
This function has the property that limε→0 limn→∞

1
nf(n, ε) = 0. The second inequality follows

from quantum data processing of both An and Bn. The final equalities follow from the same
arguments as the first two equalities and because the entropy of a tensor product state is additive.
Putting everything together, we find that the entanglement concentration rate E for any (n,E−δ, ε)
entanglement concentration protocol satisfies

E − δ ≤ H(A)ϕ +
1

2n
f(n, ε). (35)
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Taking the limit as n → ∞ and ε, δ → 0 allows us to conclude that an achievable rate E of
entanglement concentration necessarily satisfies E ≤ H(A)ϕ.
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