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1 Overview

In this lecture, we now move on to protocols in quantum Shannon theory, beginning with the
simplest one: quantum data compression.

2 Introduction

One of the fundamental tasks in classical information theory is the compression of information.
Given access to many uses of a noiseless classical channel, what is the best that a sender and re-
ceiver can make of this resource for compressed data transmission? Shannon’s compression theorem
demonstrates that the Shannon entropy is the fundamental limit for the compression rate in the
i.i.d. setting. That is, if one compresses at a rate above the Shannon entropy, then it is possible to
recover the compressed data perfectly in the asymptotic limit, and otherwise, it is not possible to do
so.1 This theorem establishes the prominent role of the entropy in Shannon’s theory of information.

In the quantum world, it very well could be that one day a sender and a receiver would have many
uses of a noiseless quantum channel available,2 and the sender could use this resource to transmit
compressed quantum information. But what exactly does this mean in the quantum setting? A
simple model of a quantum information source is an ensemble of quantum states {pX(x), |ψx〉}, i.e.,
the source outputs the state |ψx〉 with probability pX(x), and the states {|ψx〉} do not necessarily
have to form an orthonormal basis. Let us suppose for the moment that the classical data x is
available as well, even though this might not necessarily be the case in practice. A naive strategy for
compressing this quantum information source would be to ignore the quantum states coming out,
handle the classical data instead, and exploit Shannon’s compression protocol. That is, the sender
compresses the sequence xn emitted from the quantum information source at a rate equal to the
Shannon entropy H(X), sends the compressed classical bits over the noiseless quantum channels,
the receiver reproduces the classical sequence xn at his end, and finally reconstructs the sequence
|ψxn〉 of quantum states corresponding to the classical sequence xn.

The above strategy will certainly work, but it makes no use of the fact that the noiseless quantum
channels are quantum! It is clear that noiseless quantum channels will be expensive in practice,
and the above strategy is wasteful in this sense because it could have merely exploited classical

1Technically, we did not prove the converse part of Shannon’s data-compression theorem, but the converse of this
chapter suffices for Shannon’s classical theorem as well.

2How we hope so! If working, coherent fault-tolerant quantum computers come along one day, they stand to
benefit from quantum compression protocols.
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channels (channels that cannot preserve superpositions) to achieve the same goals. Schumacher
compression is a strategy that makes effective use of noiseless quantum channels to compress a
quantum information source down to a rate equal to the von Neumann entropy. This has a great
benefit from a practical standpoint—recall from the exercises that the von Neumann entropy of
a quantum information source is strictly lower than the source’s Shannon entropy if the states
in the ensemble are non-orthogonal. In order to execute the protocol, the sender and receiver
simply need to know the density operator ρ ≡

∑
x pX(x)|ψx〉〈ψx| of the source. Furthermore,

Schumacher compression is provably optimal in the sense that any protocol that compresses a
quantum information source of the above form at a rate below the von Neumann entropy cannot
have a vanishing error in the asymptotic limit.

Schumacher compression thus gives an operational interpretation of the von Neumann entropy as
the fundamental limit on the rate of quantum data compression. Also, it sets the term “qubit”
on a firm foundation in an information-theoretic sense as a measure of the amount of quantum
information “contained” in a quantum information source.

We begin this chapter by giving the details of the general information-processing task corresponding
to quantum data compression. We then prove that the von Neumann entropy is an achievable rate
of compression and follow by showing that it is optimal (these two respective parts are the direct
coding theorem and the converse theorem for quantum data compression). We illustrate how much
savings one can gain in quantum data compression by detailing a specific example. The final section
of the chapter closes with a presentation of more general forms of Schumacher compression.

3 The Typical Subspace

Our first task is to establish the notion of a quantum information source. It is analogous to the
notion of a classical information source, in the sense that the source randomly outputs a quantum
state according to some probability distribution, but the states that it outputs do not necessarily
have to be distinguishable as in the classical case.

Definition 1 (Quantum Information Source). A quantum information source is some device that
randomly emits pure qudit states in a Hilbert space HA of finite dimension.

We use the symbol A to denote the quantum system for the quantum information source. Suppose
that the source outputs states |ψy〉 randomly according to some probability distribution pY (y).
Note that the states |ψy〉 do not necessarily have to form an orthonormal set. Then the density
operator ρA of the source is the expected state emitted:

ρA ≡ EY {|ψY 〉〈ψY |A} =
∑
y

pY (y)|ψy〉〈ψy|A. (1)

There are many decompositions of a density operator as a convex sum of rank-one projectors (and
the above decomposition is one such example), but perhaps the most important decomposition is
a spectral decomposition of the density operator ρ:

ρA =
∑
x∈X

pX(x)|x〉〈x|A. (2)

The above states |x〉A are eigenvectors of ρA and form a complete orthonormal basis for Hilbert
space HA, and the non-negative, convex real numbers pX(x) are the eigenvalues of ρA.
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We have written the states |x〉A and the eigenvalues pX(x) in a suggestive notation because it is
actually possible to think of our quantum source as a classical information source—the emitted
states {|x〉A}x∈X are orthonormal and each corresponding eigenvalue pX(x) acts as a probability
for choosing |x〉A. We can say that our source is classical because it is emitting the orthogonal,
and thus distinguishable, states |x〉A with probability pX(x). This description is equivalent to the
ensemble {pY (y), |ψy〉}y because the two ensembles lead to the same density operator (recall that
two ensembles that have the same density operator are essentially equivalent because they lead to
the same probabilities for outcomes of any measurement performed on the system). Our quantum
information source then corresponds to the pure-state ensemble:

{pX(x), |x〉A}x∈X . (3)

Recall that the von Neumann entropy H(A) of the density operator ρA is as follows (Definition ??):

H(A)ρ ≡ −Tr {ρA log ρA} . (4)

It is straightforward to show that the von Neumann entropy H(A)ρ is equal to the Shannon
entropy H(X) of a random variable X with distribution pX(x) because the basis states |x〉A are
orthonormal.

Suppose now that the quantum information source emits a large number n of random quantum
states so that the density operator describing the emitted state is as follows:

ρAn ≡
ρA1 ⊗ · · · ⊗ ρAn︸ ︷︷ ︸

n
= (ρA)⊗n. (5)

The labels A1, . . . , An denote the Hilbert spaces corresponding to the different quantum systems,
but the density operator is the same for each quantum system A1, . . . , An and is equal to ρA.
The above description of a quantum source is within the i.i.d. setting for the quantum domain. A
spectral decomposition of the state in (5) is as follows:

ρAn =
∑
x1∈X

pX(x1)|x1〉〈x1|A1 ⊗ · · · ⊗
∑
xn∈X

pX(xn)|xn〉〈xn|An (6)

=
∑

x1,··· ,xn∈X
pX(x1) · · · pX(xn) (|x1〉 · · · |xn〉) (〈x1| · · · 〈xn|)A1,...,An

(7)

=
∑

xn∈Xn
pXn(xn)|xn〉〈xn|An , (8)

where we employ the shorthand:

pXn(xn) ≡ pX(x1) · · · pX(xn), |xn〉An ≡ |x1〉A1 · · · |xn〉An . (9)

The above quantum description of the density operator is essentially equivalent to the classical
picture of n realizations of random variable X with each eigenvalue pX1(x1) · · · pXn(xn) acting as
a probability because the set of states {|x1〉 · · · |xn〉A1,...,An}x1,··· ,xn∈X is an orthonormal set.

We can now “quantize” or extend the notion of typicality to the quantum information source. The
definitions follow directly from the classical definitions. The quantum definition of typicality can
employ either the weak notion or the strong notion. We do not distinguish the notation for a typical
subspace and a typical set because it should be clear from the context which kind of typicality we
are employing.
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Definition 2 (Typical Subspace). The δ-typical subspace T δAn is a subspace of the full Hilbert space
HAn = HA1 ⊗· · ·⊗HAn, associated with many copies of a density operator, such as the one in (2).
It is spanned by states |xn〉An whose corresponding classical sequences xn are δ-typical:

T δAn ≡ span
{
|xn〉An : xn ∈ TXn

δ

}
, (10)

where it is implicit that the typical subspace T δAn on the left-hand side is with respect to a density
operator ρ and the typical set TX

n

δ on the right-hand side is with respect to the distribution pX(x)

from the spectral decomposition of ρ in (2). We could also denote the typical subspace as T ρ,δAn if we
would like to make the dependence of the space on ρ more explicit.

3.1 The Typical Subspace Measurement

The definition of the typical subspace (Definition 2) gives a way to divide up the Hilbert space of
n qudits into two subspaces: the typical subspace and the atypical subspace. The properties of
the typical subspace are similar to what we found for the properties of typical sequences. That is,
the typical subspace is exponentially smaller than the full Hilbert space of n qudits, yet it contains
nearly all of the probability (in a sense that we show below). The intuition for these properties
of the typical subspace is the same as it is classically, once we have a spectral decomposition of a
density operator.

The typical projector is a projector onto the typical subspace, and the complementary projector
projects onto the atypical subspace. These projectors play an important operational role in quantum
Shannon theory because we can construct a quantum measurement from them. That is, this
measurement is the best way of asking the question, “Is the state typical or not?” because it
minimally disturbs the state while still retrieving this one bit of information.

Definition 3 (Typical Projector). Let Πδ
An denote the typical projector for the typical subspace of

a density operator ρA with spectral decomposition in (2). It is a projector onto the typical subspace:

Πδ
An ≡

∑
xn∈TXnδ

|xn〉〈xn|An , (11)

where it is implicit that the xn below the summation is a classical sequence in the typical set TX
n

δ ,
and the state |xn〉 is a quantum state given in (9) and associated with the classical sequence xn via

the spectral decomposition of ρ in (2). We can also denote the typical projector as Πρ,δ
An if we would

like to make its dependence on ρ explicit.

The action of multiplying the density operator ρAn by the typical projector Πδ
An is to select out all

the basis states of ρAn that are in the typical subspace and form a “sliced” operator ρ̃An that is
close to the original density operator ρAn :

ρ̃An ≡ Πδ
AnρAnΠδ

An =
∑

xn∈TXnδ

pXn(xn)|xn〉〈xn|An . (12)

That is, the effect of projecting a state onto the typical subspace T δAn is to “slice” out any component
of the state ρAn that does not lie in the typical subspace T δAn .

4



Exercise 4. Show that the typical projector Πδ
An commutes with the density operator ρAn:

ρAnΠδ
An = Πδ

AnρAn . (13)

The typical projector allows us to formulate an operational method for delicately asking the ques-
tion: “Is the state typical or not?” We can construct a quantum measurement that consists of two
outcomes: the outcome “1” reveals that the state is in the typical subspace, and “0” reveals that
it is not. This typical subspace measurement is often one of the first important steps in most
protocols in quantum Shannon theory.

Definition 5 (Typical Subspace Measurement). The following map is a quantum instrument that
realizes the typical subspace measurement:

σ →
(
I −Πδ

An

)
σ
(
I −Πδ

An

)
⊗ |0〉〈0|+ Πδ

AnσΠδ
An ⊗ |1〉〈1|, (14)

where σ is some density operator acting on the Hilbert space HAn. It associates a classical register
with the outcome of the measurement—the value of the classical register is |0〉 for the support of
the state σ that is not in the typical subspace, and it is equal to |1〉 for the support of the state σ
that is in the typical subspace.

The implementation of a typical subspace measurement is currently far from the reality of what is
experimentally accessible if we would like to have the measure concentration effects necessary for
proving many of the results in quantum Shannon theory. Recall that we required a sequence of
about a million bits in order to have the needed measure concentration effects. We would need a
similar number of qubits emitted from a quantum information source, and furthermore, we would
require the ability to perform noiseless coherent operations over about a million or more qubits in
order to implement the typical subspace measurement. Such a daunting requirement firmly places
quantum Shannon theory as a “highly theoretical theory,” rather than being a theory that can
make close connection to current experimental practice.3

3.2 Properties of the Typical Subspace

The typical subspace T δAn enjoys several useful properties that are “quantized” versions of the
typical sequence properties:

Property 6 (Unit Probability). Suppose that we perform a typical subspace measurement of a state
ρAn. Then the probability that the quantum state ρAn is in the typical subspace T δAn approaches one
as n becomes large:

Tr
{

Πδ
AnρAn

}
≥ 1− ε, (15)

for all ε ∈ (0, 1), δ > 0, and sufficiently large n, where Πδ
An is the typical subspace projector from

Definition 3.

3We should note that this was certainly the case as well for information theory when Claude Shannon developed
it in 1948, but in the many years since then, there has been much progress in the development of practical classical
codes for achieving the classical capacity of a classical channel.
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Property 7 (Exponentially Smaller Dimension). The dimension dim(T δAn) of the δ-typical subspace
is exponentially smaller than the dimension |X |n of the entire space of quantum states when the
output of the quantum information source is not maximally mixed. We formally state this property
as follows:

Tr
{

Πδ
An

}
≤ 2n(H(A)+cδ), (16)

where c is some positive constant that depends on whether we employ the weak or strong notion of
typicality. We can also bound the dimension dim(T δAn) of the δ-typical subspace from below:

Tr
{

Πδ
An

}
≥ (1− ε) 2n(H(A)−cδ), (17)

for all ε ∈ (0, 1), δ > 0, and sufficiently large n.

Property 8 (Equipartition). The operator Πδ
AnρAnΠδ

An corresponds to a “slicing” of the density
operator ρAn where we slice out and keep only the part with support in the typical subspace. We
can then bound all of the eigenvalues of the sliced operator Πδ

AnρAnΠδ
An as follows:

2−n(H(A)+cδ)Πδ
An ≤ Πδ

AnρAnΠδ
An ≤ 2−n(H(A)−cδ)Πδ

An . (18)

The above inequality is an operator inequality. It is a statement about the eigenvalues of the opera-
tors Πδ

AnρAnΠδ
An and Πδ

An, and these operators have the same eigenvectors because they commute.
Therefore, the above inequality is equivalent to the following inequality that applies in the classical
case:

∀xn ∈ TXn

δ : 2−n(H(A)+cδ) ≤ pXn(xn) ≤ 2−n(H(A)−cδ). (19)

This equivalence holds because each probability pXn(xn) is an eigenvalue of Πδ
AnρAnΠδ

An.

The dimension dim(T δAn) of the δ-typical subspace is approximately equal to the dimension |X |n of
the entire space only when the density operator of the quantum information source is maximally
mixed because

Tr
{

Πδ
An

}
≤ |X |n · 2nδ ' |X |n . (20)

The proofs of the above properties are essentially identical to those from the classical case in
Sections ?? and ??, regardless of whether we employ a weak or strong notion of quantum typicality.
We leave the proofs as the three exercises below.

Exercise 9. Prove the unit probability property of the δ-typical subspace (Property 6). First show
that the probability that many copies of a density operator is in the δ-typical subspace is equal to
the probability that a random sequence is δ-typical:

Tr
{

Πδ
AnρAn

}
= Pr

{
Xn ∈ TXn

δ

}
. (21)

Exercise 10. Prove the exponentially smaller dimension property of the δ-typical subspace (Prop-
erty 7). First show that the trace of the typical projector Πδ

An is equal to the dimension of the
typical subspace T δAn:

dim(T δAn) = Tr
{

Πδ
An

}
. (22)

Then prove the property.

Exercise 11. Prove the equipartition property of the δ-typical subspace (Property 8). First show
that

Πδ
AnρAnΠδ

An =
∑

xn∈TXnδ

pXn(xn)|xn〉〈xn|An , (23)

and then argue the proof.
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Figure 1: The most general protocol for quantum compression. Alice begins with the output of some
quantum information source whose density operator is ρ⊗n on some system An. The inaccessible
reference system holds the purification of this density operator. She performs some CPTP encoding
map E , sends the compressed qubits through 2nR uses of a noiseless quantum channel, and Bob
performs some CPTP decoding map D to decompress the qubits. The scheme is successful if the
difference between the initial state and the final state is negligible in the asymptotic limit n→∞.

4 The Information-Processing Task

We first overview the general task that any quantum compression protocol attempts to accomplish.
Three parameters n, R, and ε corresponding to the length of the original quantum data sequence,
the rate, and the error, respectively, characterize any such protocol. An (n,R+ δ, ε) quantum
compression code consists of four steps: state preparation, encoding, transmission, and decoding.
Figure 1 depicts a general protocol for quantum compression.

State Preparation. The quantum information source outputs a sequence |ψxn〉An of quantum
states according to the ensemble {pX(x), |ψx〉} where

|ψxn〉An ≡ |ψx1〉A1
⊗ · · · ⊗ |ψxn〉An . (24)

The density operator, from the perspective of someone ignorant of the classical sequence xn, is
equal to the tensor power state ρ⊗n where

ρ ≡
∑
x

pX(x)|ψx〉〈ψx|. (25)

Also, we can think about the purification of the above density operator. That is, an equivalent
mathematical picture is to imagine that the quantum information source produces states of the
form

|ϕρ〉RA ≡
∑
x

√
pX(x)|x〉R|ψx〉A, (26)

where R is the label for an inaccessible reference system (not to be confused with the rate R!). The
resulting i.i.d. state produced is (|ϕρ〉RA)⊗n.
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Encoding. Alice encodes the systems An according to some CPTP compression map EAn→W
where W is a quantum system of size 2nR. Recall that R is the rate of compression:

R =
1

n
log dW − δ, (27)

where dW is the dimension of system W and δ is a small positive number.

Transmission. Alice transmits the system W to Bob using n (R+ δ) noiseless qubit channels.

Decoding. Bob sends the system W through a decompression map DW→Ân .

The protocol has ε error if the compressed and decompressed state is ε-close in trace distance to
the original state (|ϕρ〉RA)⊗n:∥∥∥(ϕρRA)⊗n − (DW→Ân ◦ EAn→W )(

(
ϕρRA

)⊗n
)
∥∥∥
1
≤ ε. (28)

We say that a quantum compression rate R is achievable if there exists an (n,R+ δ, ε) quantum
compression code for all δ, ε > 0 and sufficiently large n.

5 The Quantum Data-Compression Theorem

Schumacher’s compression theorem establishes the von Neumann entropy as the fundamental limit
on quantum data compression.

Theorem 12 (Quantum Data Compression). Suppose that ρA is the density operator of the quan-
tum information source. Then the von Neumann entropy H (A)ρ is the smallest achievable rate R
for quantum data compression:

inf {R : R is achievable} = H(A)ρ. (29)

5.1 The Direct Coding Theorem

Schumacher’s compression protocol demonstrates that the von Neumann entropy H(A)ρ is an
achievable rate for quantum data compression. It is remarkably similar to Shannon’s compression
protocol, but it has some subtle differences that are necessary for the quantum setting. The basic
steps of the encoding are to perform a typical subspace measurement and an isometry that com-
presses the typical subspace. The decoder then performs the inverse of the isometry to decompress
the state. The protocol is successful if the typical subspace measurement successfully projects onto
the typical subspace, and it fails otherwise. Just like in the classical case, the law of large numbers
guarantees that the protocol is successful in the asymptotic limit as n→∞. Figure 2 provides an
illustration of the protocol, and we now provide a rigorous argument.

Alice begins with n copies of the state
(
ϕρRA

)⊗n
. Suppose that a spectral decomposition of ρ is as

follows:
ρ =

∑
z

pZ(z)|z〉〈z|, (30)

where pZ(z) is some probability distribution, and {|z〉} is some orthonormal basis. Her first step
E1An→Y An is to perform a typical subspace measurement of the form in (5) onto the typical subspace
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Figure 2: Schumacher’s compression protocol. Alice begins with many copies of the output of the
quantum information source. She performs a measurement onto the typical subspace corresponding
to the state ρ and then performs a compression isometry of the typical subspace to a space of
size 2n[H(ρ)+δ] qubits. She transmits these compressed qubits over n [H(ρ) + δ] uses of a noiseless
quantum channel. Bob performs the inverse of the isometry to uncompress the qubits. The protocol
is successful in the asymptotic limit due to the properties of typical subspaces.

of An, where the typical projector is with respect to the density operator ρ. The action of E1An→Y An
on a general state σAn is

E1An→Y An(σAn) ≡ |0〉〈0|Y ⊗
(
I −Πδ

An

)
σAn

(
I −Πδ

An

)
+ |1〉〈1|Y ⊗Πδ

AnσAnΠδ
An , (31)

and the classically correlated flag bit Y indicates whether the typical subspace projection Πδ
An is

successful or unsuccessful. Recall from the Shannon compression protocol in Section ?? that we
exploited an invertible function f that mapped from the set of typical sequences to a set of binary
sequences {0, 1}n[H(ρ)+δ]. Now, we can construct a linear map Uf that is a coherent version of this
classical function f . It simply maps the orthonormal basis {|zn〉An} to the basis {|f(zn)〉W }:

Uf ≡
∑

zn∈TZnδ

|f(zn)〉W 〈z
n|An , (32)

where Z is a random variable corresponding to the distribution pZ (z) so that TZ
n

δ is its typical set.
The inverse of the above operator is an isometry because the input space span

{
|zn〉An : zn ∈ TZnδ

}
is a subspace of size at most 2n[H(ρ)+δ] (recall Property 7) embedded in a larger space of size 2n (at
least for qubits) and the output space is of size at most 2n[H(ρ)+δ]. So her next step E2Y An→YW is to
perform the compression conditional on the flag bit Y being equal to one and otherwise declaring
an error. The action of E2Y An→YW on a general classical–quantum state

σY An ≡ |0〉〈0|Y ⊗ σ0An + |1〉〈1|Y ⊗ σ1An (33)

such that σ0An =
(
I −Πδ

An
)
σ0An

(
I −Πδ

An
)

and σ1An = Πδ
Anσ

1
AnΠδ

An is as follows:

E2Y An→YW (σY An) ≡ |0〉〈0|Y ⊗ Tr
{
σ0An

}
|e〉 〈e|W

+ |1〉〈1|Y ⊗ Ufσ1AnU
†
f , (34)
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where |e〉W is some error flag orthogonal to all of the states {|f (φxn)〉W }φxn∈TZnδ . This last step

completes the details of her encoder EAn→YW , and the action of it on the initial state is

EAn→YW (
(
ϕρRA

)⊗n
) ≡ (E2Y An→YW ◦ E1An→Y An)(

(
ϕρRA

)⊗n
). (35)

Alice then transmits all of the compressed qubits over n [H(ρ) + δ] + 1 uses of the noiseless qubit
channel.

Bob’s decoding DYW→An performs the inverse of the linear map Uf conditional on the flag bit
being equal to one and otherwise maps to some other state |e〉An outside of the typical subspace.
The action of the decoder on some general classical–quantum state

σYW ≡ |0〉〈0|Y ⊗ σ0W + |1〉〈1|Y ⊗ σ1W (36)

is
D1
YW→Y An (σYW ) ≡ |0〉〈0|Y ⊗ Tr

{
σ0W
}
|e〉 〈e|An + |1〉〈1|Y ⊗ U †fσ

1
WUf . (37)

The final part of the decoder is to discard the classical flag bit: D2
Y An→An ≡ TrY {·}. Then

DYW→An ≡ D2
Y An→An ◦ D1

YW→Y An .

We now can analyze how this protocol performs with respect to our performance criterion in (28).
Consider the following chain of inequalities:∥∥∥(ϕρRA)⊗n − (DYW→An ◦ EAn→YW ) (

(
ϕρRA

)⊗n
)
∥∥∥
1

=
∥∥∥TrY

{
|1〉〈1|Y ⊗

(
ϕρRA

)⊗n}− (DYW→An ◦ EAn→YW ) (
(
ϕρRA

)⊗n
)
∥∥∥
1

(38)

≤
∥∥∥|1〉〈1|Y ⊗ (ϕρRA)⊗n − (D1

YW→Y An ◦ EAn→YW
)

(
(
ϕρRA

)⊗n
)
∥∥∥
1

(39)

=

∥∥∥∥∥∥∥
|1〉〈1|Y ⊗

(
ϕρRA

)⊗n−(
|0〉〈0|Y ⊗ Tr

{(
I −Πδ

An
) (
ϕρRA

)⊗n} |e〉 〈e|An
+|1〉〈1|Y ⊗Πδ

An
(
ϕρRA

)⊗n
Πδ
An

) ∥∥∥∥∥∥∥
1

. (40)

The first equality follows by adding a flag bit |1〉Y to
(
ϕρRA

)⊗n
and tracing it out. The first inequality

follows from monotonicity of trace distance under the discarding of subsystems (Corollary ??).

The second equality follows by evaluating the map D1
YW→Y An ◦ EAn→YW on the state

(
ϕρRA

)⊗n
.

Continuing, we have

≤
∥∥∥|1〉〈1|Y ⊗ (ϕρRA)⊗n − |1〉〈1|Y ⊗Πδ

An
(
ϕρRA

)⊗n
Πδ
An

∥∥∥
1

+
∥∥∥|0〉〈0|Y ⊗ Tr

{(
I −Πδ

An

) (
ϕρRA

)⊗n} |e〉 〈e|An∥∥∥
1

(41)

=
∥∥∥(ϕρRA)⊗n −Πδ

An
(
ϕρRA

)⊗n
Πδ
An

∥∥∥
1

+ Tr
{(
I −Πδ

An

) (
ϕρRA

)⊗n}
(42)

≤ 2
√
ε+ ε. (43)

The first inequality follows from the triangle inequality for trace distance (Lemma ??). The equality
uses the facts ‖ρ⊗ σ − ω ⊗ σ‖1 = ‖ρ− ω‖1 ‖σ‖1 = ‖ρ− ω‖1 and ‖bρ‖1 = |b| ‖ρ‖1 for some density
operators ρ, σ, and ω and a constant b. The final inequality follows from the first property of
typical subspaces:

Tr
{

Πδ
An
(
ϕρRA

)⊗n}
= Tr

{
Πδ
Anρ

⊗n
}
≥ 1− ε, (44)
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and the gentle operator lemma.

We remark that it is important for the typical subspace measurement in (31) to be implemented
as a non-destructive quantum measurement. That is, the only information that this measurement
should learn is whether the state is typical or not. Otherwise, there would be too much disturbance
to the quantum information, and the protocol would fail at the desired task of compression. Such
precise control on so many qubits is possible in principle, but it is rather daunting to implement in
practice!

5.2 The Converse Theorem

We now prove the converse theorem for quantum data compression by considering the most general
compression protocol that meets the success criterion in (28) and demonstrating that such an
asymptotically error-free protocol should have its rate of compression above the von Neumann
entropy of the source. Alice would like to compress a state ρ⊗n that acts on a Hilbert space An.
A purification φRnAn ≡

(
ϕρRA

)⊗n
of this state represents the state of the joint systems An and Rn

where Rn is the purifying system (again, we should not confuse reference system Rn with rate R).
If she can compress any system on An and recover it faithfully, then she should be able to do so
for the purification of the state. An (n,R+ δ, ε) compression code has the property that it can
compress at a rate R+ δ with only error ε. The quantum data processing is

An EAn→W−−−−−→ W DW→Ân−−−−−→
Ân (45)

and the following inequality holds for a quantum compression protocol with error ε:∥∥∥ωRnÂn − (ϕρRA)⊗n∥∥∥1 ≤ ε, (46)

where
ωRnÂn ≡ DW→Ân(EAn→W (

(
ϕρRA

)⊗n
)). (47)

Consider the following chain of inequalities:

2 log |W | ≥ I (W ;Rn)ω (48)

≥ I(Ân;Rn)ω (49)

≥ I(An;Rn)φ − f(ε, n) (50)

= H(An)φ +H (Rn)φ −H (AnRn)φ − f(ε, n) (51)

= 2H(An)φ − f(ε, n). (52)

The first inequality is a consequence of a dimension bound for the quantum mutual information
I (E;F ) ≤ 2 log (min {|E| , |F |}) and the fact that |W | = 2nR. The second inequality follows from
the quantum data-processing inequality (Bob processes W with the decoder to get Ân). The third
inequality follows from applying the Alicki–Fannes inequality to the success criterion in (46) and
setting f(ε, n) ≡ n6εR+ 4h2(ε). This function has the property that limε→0 limn→∞

1
nf(ε, n) = 0.

The second equality is from the definition of quantum mutual information, and the last equality
follows because the entropies of each half of a pure, bipartite state are equal and their joint entropy
vanishes. Given that the state φ is an i.i.d. state of the form

(
ϕρRA

)⊗n
, the von Neumann entropy

is additive so that
H(An)(ϕρ)⊗n = nH(A)ϕρ . (53)
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Putting everything together, we find that

R+ δ =
1

n
log |W | ≥ H(A)ϕρ −

1

2n
f(ε, n). (54)

Taking the limit as n→∞ and ε, δ → 0 allows us to conclude that an achievable rate R of quantum
data compression necessarily satisfies R ≥ H(A)ϕρ .
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