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1 Overview

In the previous lecture, we introduced quantum entropy and some other variants of it, such as
conditional entropy, mutual information, and conditional mutual information.

In this lecture, we discuss several entropy inequalities that play an important role in quantum
information processing: the monotonicity of quantum relative entropy, strong subadditivity, the
quantum data-processing inequalities, and continuity of quantum entropy.

2 Quantum Relative Entropy

The quantum relative entropy is one of the most important entropic quantities in quantum informa-
tion theory, mainly because we can reexpress many of the entropies given in the previous sections
in terms of it. This in turn allows us to establish many properties of these quantities from the
properties of relative entropies. Its definition is a natural extension of that for the classical relative
entropy. Before defining it, we need the notion of the support of an operator:

Definition 1 (Kernel and Support). The kernel of an operator A ∈ L(H,H′) is defined as

ker(A) ≡ {|ψ〉 ∈ H : A|ψ〉 = 0}. (1)

The support of A is the subspace of H orthogonal to its kernel:

supp(A) ≡ {|ψ〉 ∈ H : A|ψ〉 6= 0}. (2)

If A is Hermitian and thus has a spectral decomposition as A =
∑

i:ai 6=0 ai|i〉〈i|, then supp(A) =
span{|i〉 : ai 6= 0}. The projection onto the support of A is denoted by

ΠA ≡
∑
i:ai 6=0

|i〉〈i|. (3)

Definition 2. The quantum relative entropy D(ρ‖σ) between a density operator ρ ∈ D(H) and a
positive semi-definite operator σ ∈ L(H) is defined as follows:

D(ρ‖σ) ≡ Tr {ρ [log ρ− log σ]} , (4)

if the following support condition is satisfied

supp(ρ) ⊆ supp(σ), (5)

and it is defined to be equal to +∞ otherwise.
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This definition is consistent with the classical definition of relative entropy. However, we should
note that there could be be several ways to generalize the classical definition to obtain a quantum
definition of relative entropy. For example, one could take

D′(ρ‖σ) = Tr
{
ρ log

(
ρ1/2σ−1ρ1/2

)}
, (6)

as a definition and it reduces to the classical definition as well. In fact, it is easy to see that there are
an infinite number of quantum generalizations of the classical definition of relative entropy. So how
do we single out which definition is the right one to use? The definition given in (4) is the answer
to a meaningful quantum information-processing task. Furthermore, this definition generalizes the
quantum entropic quantities we have given in this chapter, which all in turn are the answers to
meaningful quantum information-processing tasks. For these reasons, we take the definition given
in (4) as the quantum relative entropy. Recall that it was this same line of reasoning that allowed
us to single out the entropy and the mutual information as meaningful measures of information in
the classical case.

Similar to the classical case, we can intuitively think of the quantum relative entropy as a distance
measure between quantum states. But it is not strictly a distance measure in the mathematical
sense because it is not symmetric and it does not obey a triangle inequality.

The following proposition justifies why we take the definition of quantum relative entropy to have
the particular support conditions as given above:

Proposition 3. Let ρ ∈ D(H) and σ ∈ L(H) be positive semi-definite. The quantum relative
entropy is consistent with the following limit:

D(ρ‖σ) = lim
ε↘0

D(ρ‖σ + εI). (7)

One of the most fundamental entropy inequalities in quantum information theory is the mono-
tonicity of quantum relative entropy. When the arguments to the quantum relative entropy are
quantum states, the physical interpretation of this entropy inequality is that states become less
distinguishable when noise acts on them. We defer a proof of this theorem until later, where we
also establish a strengthening of it.

Theorem 4 (Monotonicity of Quantum Relative Entropy). Let ρ ∈ D(H), σ ∈ L(H) be positive
semi-definite, and N : L(H) → L(H′) be a quantum channel. The quantum relative entropy can
only decrease if we apply the same quantum channel N to ρ and σ:

D(ρ‖σ) ≥ D(N (ρ)‖N (σ)). (8)

Theorem 4 then implies non-negativity of quantum relative entropy in certain cases.

Theorem 5 (Non-Negativity). Let ρ ∈ D(H), and let σ ∈ L(H) be positive semi-definite and such
that Tr{σ} ≤ 1. The quantum relative entropy D(ρ‖σ) is non-negative:

D(ρ‖σ) ≥ 0, (9)

and D(ρ‖σ) = 0 if and only if ρ = σ.
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Proof. The first part of the theorem follows from applying Theorem 4, taking the quantum channel
to be the trace-out map. We then have that

D(ρ‖σ) ≥ D(Tr{ρ}‖Tr{σ}) (10)

= Tr{ρ} log

(
Tr{ρ}
Tr{σ}

)
(11)

≥ 0. (12)

If ρ = σ, then the support condition in (5) is satisfied and plugging into (4) gives that D(ρ‖σ) = 0.
Now suppose that D(ρ‖σ) = 0. This means that the inequality above is saturated and thus Tr{σ} =
Tr{ρ} = 1, so that σ is a density operator. LetM be an arbitrary measurement channel. From the
monotonicity of quantum relative entropy (Theorem 4), we can conclude that D(M(ρ)‖M(σ)) = 0.
The equality condition for the non-negativity of the classical relative entropy in turn implies that
M(ρ) = M(σ). Now since this equality holds for any possible measurement channel, we can
conclude that ρ = σ. (For example, we could takeM to be the optimal measurement for the trace
distance, which would allow us to conclude that maxM ‖M(ρ)−M(σ)‖1 = ‖ρ− σ‖1 = 0, and
hence ρ = σ.)

2.1 Deriving Other Entropies from Quantum Relative Entropy

There is a sense in which the quantum relative entropy is a “parent quantity” for other entropies in
quantum information theory, such as the von Neumann entropy, the conditional quantum entropy,
the quantum mutual information, and the conditional quantum mutual information. The following
exercises explore these relations. The main tool needed to solve some of them is the non-negativity
of quantum relative entropy.

Exercise 6. Let PA ∈ L(HA) and QB ∈ L(HB) be positive semi-definite operators. Show that the
following identity holds:

log (PA ⊗QB) = log (PA)⊗ IB + IA ⊗ log (QB) . (13)

Exercise 7 (Mutual Information and Relative Entropy). Let ρAB ∈ D(HA ⊗HB). Show that the
following identities hold:

I(A;B)ρ = D(ρAB‖ρA ⊗ ρB) (14)

= min
σB

D(ρAB‖ρA ⊗ σB) (15)

= min
ωA

D(ρAB‖ωA ⊗ ρB) (16)

= min
ωA,σB

D(ρAB‖ωA ⊗ σB), (17)

where the optimizations are with respect to ωA ∈ D(HA) and σB ∈ D(HB).

Exercise 8 (Conditional Entropy and Relative Entropy). Let ρAB ∈ D(HA ⊗HB). Show that the
following identities hold:

I(A〉B)ρ = D(ρAB‖IA ⊗ ρB) (18)

= min
σB∈D(HB)

D(ρAB‖IA ⊗ σB). (19)
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Note that these imply that

H(A|B)ρ = −D(ρAB‖IA ⊗ ρB) (20)

= − min
σB∈D(HB)

D(ρAB‖IA ⊗ σB). (21)

Exercise 9 (Relative Entropy of Classical–Quantum States). Show that the quantum relative en-
tropy between classical–quantum states ρXB and σXB is as follows:

D(ρXB‖σXB) =
∑
x

pX(x)D(ρxB‖σxB), (22)

where
ρXB ≡

∑
x

pX(x)|x〉〈x|X ⊗ ρxB, σXB ≡
∑
x

pX(x)|x〉〈x|X ⊗ σxB, (23)

with pX a probability distribution over a finite alphabet X , ρxB ∈ D(HB) for all x ∈ X , and
σxB ∈ L(HB) positive semi-definite for all x ∈ X .

3 Quantum Entropy Inequalities

Monotonicity of quantum relative entropy has as its corollaries many of the important entropy
inequalities in quantum information theory.

Corollary 10 (Strong Subadditivity). Let ρABC ∈ D(HA⊗HB⊗HC). The von Neumann entropy
is strongly subadditive, in the following sense:

H(AC)ρ +H(BC)ρ ≥ H(ABC)ρ +H(C)ρ. (24)

Equivalently, we have that
I(A;B|C)ρ ≥ 0. (25)

Proof. Consider that

I(A;B|C)ρ = H(AC)ρ +H(BC)ρ −H(ABC)ρ −H(C)ρ, (26)

so that
I(A;B|C)ρ = H(B|C)ρ −H(B|AC)ρ. (27)

From Exercise 8, we know that

−H(B|AC)ρ = D(ρABC‖IB ⊗ ρAC), (28)

H(B|C)ρ = −D(ρBC‖IB ⊗ ρC). (29)

Then

D(ρABC‖IB ⊗ ρAC) ≥ D(TrA{ρABC}‖TrA{IB ⊗ ρAC}) (30)

= D(ρBC‖IB ⊗ ρC). (31)

The inequality is a consequence of the monotonicity of quantum relative entropy (Theorem 4),
taking ρ = ρABC , σ = IB ⊗ ρAC , and N = TrA. By (26)–(29), the inequality in (30)–(31) is
equivalent to the inequality in the statement of the corollary.
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Corollary 11 (Joint Convexity of Quantum Relative Entropy). Let pX be a probability distribution
over a finite alphabet X , ρx ∈ D(H) for all x ∈ X , and σx ∈ L(H) be positive semi-definite for all
x ∈ X . Set ρ ≡

∑
x pX(x)ρx and σ ≡

∑
x pX(x)σx. The quantum relative entropy is jointly convex

in its arguments:

D(ρ‖σ) ≤
∑
x

pX(x)D(ρx‖σx). (32)

Proof. Consider classical–quantum states of the following form:

ρXB ≡
∑
x

pX(x)|x〉〈x|X ⊗ ρxB, (33)

σXB ≡
∑
x

pX(x)|x〉〈x|X ⊗ σxB. (34)

Then ∑
x

pX(x)D(ρxB‖σxB) = D(ρXB‖σXB) ≥ D(ρB‖σB). (35)

The equality follows from Exercise 9, and the inequality follows from monotonicity of quantum
relative entropy (Theorem 4), where we take the channel to be the partial trace over the system
X.

Corollary 12 (Unital Channels Increase Entropy). Let ρ ∈ D(H) and let N : L(H)→ L(H) be a
unital quantum channel. Then

H(N (ρ)) ≥ H(ρ). (36)

Proof. Consider that

H(ρ) = −D(ρ‖I), (37)

H(N (ρ)) = −D(N (ρ)‖I) = −D(N (ρ)‖N (I)), (38)

where in the last equality, we have used that N is a unital quantum channel. The inequality
in (36) is a consequence of the monotonicity of quantum relative entropy (Theorem 4) because
D(ρ‖I) ≥ D(N (ρ)‖N (I)).

3.1 Quantum Data Processing

The quantum data-processing inequalities discussed below are similar in spirit to the classical data-
processing inequality. Recall that the classical data-processing inequality states that processing
classical data reduces classical correlations. The quantum data-processing inequalities state that
processing quantum data reduces quantum correlations.

One variant applies to the following scenario. Suppose that Alice and Bob share some bipartite
state ρAB. The coherent information I(A〉B)ρ is one measure of the quantum correlations present in
this state. Bob then processes his system B according to some quantum channel NB→B′ to produce
some quantum system B′ and let σAB′ denote the resulting state. The quantum data-processing
inequality states that this step of quantum data processing reduces quantum correlations, in the
sense that

I(A〉B)ρ ≥ I(A〉B′)σ. (39)
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Theorem 13 (Quantum Data Processing for Coherent Information). Let ρAB ∈ D(HA⊗HB) and
let N : L(HB) → L(HB′) be a quantum channel. Set σAB′ ≡ NB→B′(ρAB). Then the following
quantum data-processing inequality holds

I(A〉B)ρ ≥ I(A〉B′)σ. (40)

Proof. This is a consequence of Exercise 8 and Theorem 4. By Exercise 8, we know that

I(A〉B)ρ = D(ρAB‖IA ⊗ ρB), (41)

I(A〉B′)σ = D(σAB′‖IA ⊗ σB′) (42)

= D(NB→B′(ρAB)‖IA ⊗NB→B′(ρB)) (43)

= D(NB→B′(ρAB)‖NB→B′(IA ⊗ ρB)). (44)

The statement then follows from the monotonicity of quantum relative entropy by picking ρ = ρAB,
σ = IA ⊗ ρB, and N = idA⊗NB→B′ in Theorem 4.

Theorem 14 (Quantum Data Processing for Mutual Information). Let ρAB ∈ D(HA ⊗ HB),
N : L(HA) → L(HA′) be a quantum channel, and M : L(HB) → L(HB′) be a quantum channel.
Set σA′B′ ≡ (NA→A′ ⊗ MB→B′)(ρAB). Then the following quantum data-processing inequality
applies to the quantum mutual information:

I(A;B)ρ ≥ I(A′;B′)σ. (45)

Proof. From Exercise 7, we know that

I(A;B)ρ = D(ρAB‖ρA ⊗ ρB), (46)

I(A′;B′)σ = D(σA′B′‖σA′ ⊗ σB′) (47)

= D((NA→A′ ⊗MB→B′)(ρAB)‖NA→A′(ρA)⊗MB→B′(ρB)) (48)

= D((NA→A′ ⊗MB→B′)(ρAB)‖(NA→A′ ⊗MB→B′)(ρA ⊗ ρB)). (49)

The statement then follows from the monotonicity of quantum relative entropy by picking ρ = ρAB,
σ = ρA ⊗ ρB, and N = NA→A′ ⊗MB→B′ in Theorem 4.

4 Continuity of Entropy

An important theorem below, the Alicki–Fannes–Winter (AFW) inequality, states that conditional
quantum entropies are close as well. This statement does follow directly from the Fannes–Audenaert
inequality, but the main advantage of the AFW inequality is that the upper bound has a depen-
dence only on the dimension of the first system in the conditional entropy (no dependence on the
conditioning system). The AFW inequality also finds application in a proof of a converse theorem
in quantum Shannon theory.

Theorem 15 (AFW Inequality). Let ρAB, σAB ∈ D(HA ⊗HB). Suppose that

1

2
‖ρAB − σAB‖1 ≤ ε, (50)
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for ε ∈ [0, 1]. Then

|H(A|B)ρ −H(A|B)σ| ≤ 2ε log dim(HA) + (1 + ε)h2

(
ε

1 + ε

)
. (51)

If ρXB and σXB are classical–quantum and have the following form:

ρXB =
∑
x

p(x)|x〉〈x|X ⊗ ρxB, (52)

σXB =
∑
x

q(x)|x〉〈x|X ⊗ σxB, (53)

where p and q are probability distributions defined over a finite alphabet X , {|x〉} is an orthonormal
basis, and ρxB, σ

x
B ∈ D(HB) for all x ∈ X , then

|H(X|B)ρ −H(X|B)σ| ≤ ε log dim(HX) + (1 + ε)h2

(
ε

1 + ε

)
, (54)

|H(B|X)ρ −H(B|X)σ| ≤ ε log dim(HB) + (1 + ε)h2

(
ε

1 + ε

)
. (55)

Proof. The bounds trivially hold when ε = 0, so henceforth we assume that ε ∈ (0, 1]. All of the
upper bounds are monotone non-decreasing with ε, so it suffices to assume that 1

2 ‖ρAB − σAB‖1 =
ε. Let ρAB − σAB = PAB −QAB be a decomposition of ρAB − σAB into its positive part PAB ≥ 0
and its negative part QAB ≥ 0. Let ∆AB ≡ PAB/ε. Since Tr{PAB} = 1

2 ‖ρAB − σAB‖1 (recall this
from the development with trace distance), it follows that ∆AB is a density operator. Now consider
that

ρAB = σAB + (ρAB − σAB) (56)

= σAB + PAB −QAB (57)

≤ σAB + PAB (58)

= σAB + ε∆AB (59)

= (1 + ε)

(
1

1 + ε
σAB +

ε

1 + ε
∆AB

)
(60)

= (1 + ε)ωAB, (61)

where we define

ωAB ≡
1

1 + ε
σAB +

ε

1 + ε
∆AB. (62)

Now let

∆′AB ≡
1

ε
[(1 + ε)ωAB − ρAB] . (63)

It follows from (56)–(61) that ∆′AB is positive semi-definite. Furthermore, one can check that
Tr{∆′AB} = 1, so that ∆′AB is a density operator. One can also quickly check that

ωAB =
1

1 + ε
ρAB +

ε

1 + ε
∆′AB =

1

1 + ε
σAB +

ε

1 + ε
∆AB. (64)
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Now consider that

H(A|B)ω = −D(ωAB‖IA ⊗ ωB) (65)

= H(ωAB) + Tr{ωAB logωB} (66)

≤ h2

(
ε

1 + ε

)
+

1

1 + ε
H(ρAB) +

ε

1 + ε
H(∆′AB) (67)

+
1

1 + ε
Tr{ρAB logωB}+

ε

1 + ε
Tr{∆′AB logωB} (68)

= h2

(
ε

1 + ε

)
− 1

1 + ε
D(ρAB‖IA ⊗ ωB) (69)

− ε

1 + ε
D(∆′AB‖IA ⊗ ωB) (70)

≤ h2

(
ε

1 + ε

)
+

1

1 + ε
H(A|B)ρ +

ε

1 + ε
H(A|B)∆′ . (71)

The first equality follows from Exercise 8, and the second equality follows from the definition of
quantum relative entropy. The first inequality follows because H(AB) ≤ H(Y ) + H(AB|Y ) for a
classical–quantum state on systems Y and AB, here taking the state as

1

1 + ε
|0〉〈0|Y ⊗ ρAB +

ε

1 + ε
|1〉〈1|Y ⊗∆′AB. (72)

The third equality follows from algebra and the definition of quantum relative entropy. The last
inequality follows from Exercise 8. From concavity of the conditional entropy, we have that

H(A|B)ω ≥
1

1 + ε
H(A|B)σ +

ε

1 + ε
H(A|B)∆. (73)

Putting together the upper and lower bounds on H(A|B)ω, we find that

H(A|B)σ −H(A|B)ρ ≤ (1 + ε)h2

(
ε

1 + ε

)
+ ε [H(A|B)∆′ −H(A|B)∆] (74)

≤ (1 + ε)h2

(
ε

1 + ε

)
+ 2ε log dim(HA), (75)

where the second inequality follows from a dimension bound for the conditional entropy.

The statements for classical–quantum states follow because the density operator ∆ is classical–
quantum in this case and we know that H(X|B)∆, H(B|X)∆ ≥ 0.
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