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1 Overview

In the previous lecture, we discussed classical entropy and entropy inequalities.

In this lecture, we discuss several information measures that are important for quantifying the
amount of information and correlations that are present in quantum systems. The first fundamental
measure that we introduce is the von Neumann entropy. It is the quantum generalization of the
Shannon entropy, but it captures both classical and quantum uncertainty in a quantum state.
The von Neumann entropy gives meaning to a notion of the information qubit. This notion is
different from that of the physical qubit, which is the description of a quantum state of an electron
or a photon. The information qubit is the fundamental quantum informational unit of measure,
determining how much quantum information is present in a quantum system.

The initial definitions here are analogous to the classical definitions of entropy, but we soon discover
a radical departure from the intuitive classical notions from the previous chapter: the conditional
quantum entropy can be negative for certain quantum states. In the classical world, this negativity
simply does not occur, but it takes a special meaning in quantum information theory. Pure quantum
states that are entangled have stronger-than-classical correlations and are examples of states that
have negative conditional entropy. The negative of the conditional quantum entropy is so important
in quantum information theory that we even have a special name for it: the coherent information.
We discover that the coherent information obeys a quantum data-processing inequality, placing it
on a firm footing as a particular informational measure of quantum correlations.

We then define several other quantum information measures, such as quantum mutual information,
that bear similar definitions as in the classical world, but with Shannon entropies replaced with
von Neumann entropies. This replacement may seem to make quantum entropy somewhat trivial
on the surface, but a simple calculation reveals that a maximally entangled state on two qubits
registers two bits of quantum mutual information (recall that the largest the mutual information
can be in the classical world is one bit for the case of two maximally correlated bits).

2 Quantum Entropy

We might expect a measure of the entropy of a quantum system to be vastly different from the
classical measure of entropy from the previous chapter because a quantum system possesses not
only classical uncertainty but also quantum uncertainty that arises from the uncertainty principle.
But recall that the density operator captures both types of uncertainty and allows us to determine
probabilities for the outcomes of any measurement on system A. Thus, a quantum measure of
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uncertainty should be a direct function of the density operator, just as the classical measure of
uncertainty is a direct function of a probability density function. It turns out that this function
has a strikingly similar form to the classical entropy, as we see below.

Definition 1 (Quantum Entropy). Suppose that Alice prepares some quantum system A in a state
ρA ∈ D(HA). Then the entropy H(A)ρ of the state is as follows:

H(A)ρ ≡ −Tr {ρA log ρA} . (1)

The entropy of a quantum system is also known as the von Neumann entropy or the quantum
entropy but we often simply refer to it as the entropy. We can denote it by H(A)ρ or H(ρA) to
show the explicit dependence on the density operator ρA. The von Neumann entropy has a special
relation to the eigenvalues of the density operator, as the following exercise asks you to verify.

Exercise 2. Consider a density operator ρA with the following spectral decomposition:

ρA =
∑
x

pX(x)|x〉〈x|A. (2)

Show that the entropy H(A)ρ is the same as the Shannon entropy H(X) of a random variable X
with probability distribution pX(x).

In our definition of quantum entropy, we use the same notation H as in the classical case to denote
the entropy of a quantum system. It should be clear from the context whether we are referring to
the entropy of a quantum or classical system.

The quantum entropy admits an intuitive interpretation. Suppose that Alice generates a quantum
state |ψy〉 in her lab according to some probability density pY (y), corresponding to a random
variable Y . Suppose further that Bob has not yet received the state from Alice and does not know
which one she sent. The expected density operator from Bob’s point of view is then

σ = EY {|ψY 〉〈ψY |} =
∑
y

pY (y)|ψy〉〈ψy|. (3)

The interpretation of the entropy H(σ) is that it quantifies Bob’s uncertainty about the state Alice
sent—his expected information gain is H(σ) qubits upon receiving and measuring the state that
Alice sends.

2.1 Mathematical Properties of Quantum Entropy

We now discuss several mathematical properties of the quantum entropy: non-negativity, its mini-
mum value, its maximum value, its invariance with respect to isometries, and concavity. The first
three of these properties follow from the analogous properties in the classical world because the von
Neumann entropy of a density operator is the Shannon entropy of its eigenvalues (see Exercise 2).
We state them formally below:

Property 3 (Non-Negativity). The von Neumann entropy H(ρ) is non-negative for any density
operator ρ:

H(ρ) ≥ 0. (4)
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Proof. This follows from non-negativity of Shannon entropy.

Property 4 (Minimum Value). The minimum value of the von Neumann entropy is zero, and it
occurs when the density operator is a pure state.

Proof. The minimum value equivalently occurs when the eigenvalues of a density operator are
distributed with all the probability mass on one eigenvector and zero on the others, so that the
density operator is rank one and corresponds to a pure state.

Why should the entropy of a pure quantum state vanish? It seems that there is quantum uncertainty
inherent in the state itself and that a measure of quantum uncertainty should capture this fact. This
last observation only makes sense if we do not know anything about the state that is prepared. But
if we know exactly how it was prepared, we can perform a special quantum measurement to verify
that the quantum state was prepared, and we do not learn anything from this measurement because
the outcome of it is always certain. For example, suppose that Alice prepares the state |φ〉 and
Bob knows that she does so. He can then perform the following measurement {|φ〉 〈φ| , I − |φ〉〈φ|}
to verify that she prepared this state. He always receives the first outcome from the measurement
and thus never gains any information from it. Thus, in this sense it is reasonable that the entropy
of a pure state vanishes.

Property 5 (Maximum Value). The maximum value of the von Neumann entropy is log d where
d is the dimension of the system, and it occurs for the maximally mixed state.

Proof. A proof of the above property is the same as that for the classical case.

Property 6 (Concavity). Let ρx ∈ D(H) and let pX(x) be a probability distribution. The entropy
is concave in the density operator:

H(ρ) ≥
∑
x

pX(x)H(ρx), (5)

where ρ ≡
∑

x pX(x)ρx.

The physical interpretation of concavity is as before for classical entropy: entropy can never decrease
under a mixing operation. This inequality is a fundamental property of the entropy, and we prove
it after developing some important entropic tools.

Property 7 (Isometric Invariance). Let ρ ∈ D(H) and U : H → H′ be an isometry. The entropy
of a density operator is invariant with respect to isometries, in the following sense:

H(ρ) = H(UρU †). (6)

Proof. Isometric invariance of entropy follows by observing that the eigenvalues of a density oper-
ator are invariant with respect to an isometry.
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3 Joint Quantum Entropy

The joint quantum entropy H(AB)ρ of the density operator ρAB ∈ D(HA ⊗ HB) for a bipartite
system AB follows naturally from the definition of quantum entropy:

H(AB)ρ ≡ −Tr {ρAB log ρAB} . (7)

Now suppose that ρABC is a tripartite state, i.e., in D(HA⊗HB⊗HC). Then the entropy H(AB)ρ
in this case is defined as above, where ρAB = TrC{ρABC}. This is a convention that we take
throughout. We introduce a few of the properties of joint quantum entropy in the subsections
below.

3.1 Marginal Entropies of a Pure Bipartite State

The five properties of quantum entropy in the previous section may give you the impression that the
nature of quantum information is not too different from that of classical information. We proved
all these properties for the classical case, and their proofs for the quantum case seem similar. The
first three even resort to the proofs in the classical case!

Theorem 8 below is where we observe our first radical departure from the classical world. It states
that the marginal entropies of a pure bipartite state are equal, while the entropy of the overall state
is equal to zero. Recall that the joint entropy H(X,Y ) of two random variables X and Y is never
less than one of the marginal entropies H(X) or H(Y ):

H(X,Y ) ≥ H(X), H(X,Y ) ≥ H(Y ). (8)

The above inequalities follow from the non-negativity of classical conditional entropy. But in
the quantum world, these inequalities do not always have to hold, and the following theorem
demonstrates that they do not hold for an arbitrary pure bipartite quantum state with Schmidt rank
greater than one. The fact that the joint quantum entropy can be less than the marginal quantum
entropy is one of the most fundamental differences between classical and quantum information.

Theorem 8. The marginal entropies H(A)φ and H(B)φ of a pure bipartite state |φ〉AB are equal:

H(A)φ = H(B)φ, (9)

while the joint entropy H(AB)φ vanishes:

H(AB)φ = 0. (10)

Proof. The crucial ingredient for a proof of this theorem is the Schmidt decomposition. Recall that
any bipartite state |φ〉AB admits a Schmidt decomposition of the following form:

|φ〉AB =
∑
i

√
λi |i〉A |i〉B, (11)

where {|i〉A} is some orthonormal set of vectors on system A and {|i〉B} is some orthonormal set on
system B. Recall that the Schmidt rank is equal to the number of non-zero coefficients λi. Then
the respective marginal states ρA and ρB on systems A and B are as follows:

ρA =
∑
i

λi|i〉〈i|A, ρB =
∑
i

λi|i〉〈i|B. (12)
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Thus, the marginal states admit a spectral decomposition with the same eigenvalues. The theorem
follows because the von Neumann entropy depends only on the eigenvalues of a given spectral
decomposition.

The theorem applies not only to two systems A and B, but it also applies to any number of systems
if we make a bipartite cut of the systems. For example, if the state is |φ〉ABCDE , then the following
equalities (and others from different combinations) hold by applying Theorem 8:

H(A)φ = H(BCDE)φ, (13)

H(AB)φ = H(CDE)φ, (14)

H(ABC)φ = H(DE)φ, (15)

H(ABCD)φ = H(E)φ. (16)

The closest analogy in the classical world to the above property is when we copy a random variable
X. That is, suppose that X has a distribution pX(x) and X̂ is some copy of it so that the
distribution of the joint random variable XX̂ is pX(x)δx,x̂. Then the marginal entropies H(X) and

H(X̂) are both equal. But observe that the joint entropy H(XX̂) is also equal to H(X) and this
is where the analogy breaks down. That is, there is not a good classical analogy of the notion of
purification.

3.2 Additivity

Property 9 (Additivity). Let ρA ∈ D(HA) and σB ∈ D(HB). The quantum entropy is additive
for tensor-product states:

H(ρA ⊗ σB) = H(ρA) +H(σB). (17)

One can verify this property simply by diagonalizing both density operators and resorting to the
additivity of the joint Shannon entropies of the eigenvalues.

Additivity is an intuitive property that we would like to hold for any measure of information.
For example, suppose that Alice generates a large sequence |ψx1〉 |ψx2〉 · · · |ψxn〉 of quantum states
according to the ensemble {pX(x), |ψx〉}. She may be aware of the classical indices x1x2 · · ·xn, but
a third party to whom she sends the quantum sequence may not be aware of these values. The
description of the state to this third party is then ρ⊗ · · · ⊗ ρ, where ρ ≡ EX {|ψX〉〈ψX |}, and the
quantum entropy of this n-fold tensor product state is H(ρ ⊗ · · · ⊗ ρ) = nH(ρ), by applying (17)
inductively.

3.3 Joint Quantum Entropy of a Classical–Quantum State

Recall that a classical–quantum state is a bipartite state in which a classical system and a quantum
system are classically correlated. An example of such a state is as follows:

ρXB ≡
∑
x

pX(x)|x〉〈x|X ⊗ ρxB. (18)

The joint quantum entropy of this state takes on a special form that appears similar to entropies
in the classical world.
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Theorem 10. The joint entropy H(XB)ρ of a classical–quantum state, as given in (18), is as
follows:

H(XB)ρ = H(X) +
∑
x

pX(x)H(ρxB), (19)

where H(X) is the entropy of a random variable X with distribution pX(x).

Proof. Consider that
H(XB)ρ = −Tr {ρXB log ρXB} . (20)

So we need to evaluate the operator log ρXB, and we can find a simplified form for it because ρXB
is a classical-quantum state:

log ρXB = log

[∑
x

pX(x)|x〉〈x|X ⊗ ρxB

]
(21)

= log

[∑
x

|x〉〈x|X ⊗ pX(x)ρxB

]
(22)

=
∑
x

|x〉〈x|X ⊗ log [pX(x)ρxB] . (23)

Then

− Tr {ρXB log ρXB}

= −Tr

{[∑
x

pX(x)|x〉〈x|X ⊗ ρxB

][∑
x′

|x′〉〈x′|X ⊗ log
[
pX(x′)ρx

′
B

]]}
(24)

= −Tr

{∑
x

pX(x)|x〉〈x|X ⊗ (ρxB log [pX(x)ρxB])

}
(25)

= −
∑
x

pX(x) Tr {ρxB log [pX(x)ρxB]} . (26)

Consider that
log [pX(x)ρxB] = log (pX(x)) I + log ρxB, (27)

which implies that (26) is equal to

−
∑
x

pX(x) [Tr {ρxB log [pX(x)]}+ Tr {ρxB log ρxB}] (28)

= −
∑
x

pX(x) [log [pX(x)] + Tr {ρxB log ρxB}] . (29)

This last line is then equivalent to the statement of the theorem.

4 Conditional Quantum Entropy

The definition of conditional quantum entropy that has been most useful in quantum information
theory is the following simple one, inspired from the relation between joint entropy and marginal
entropy in the classical case.
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Definition 11 (Conditional Quantum Entropy). Let ρAB ∈ D(HA⊗HB). The conditional quantum
entropy H(A|B)ρ of ρAB is equal to the difference of the joint quantum entropy H(AB)ρ and the
marginal entropy H(B)ρ:

H(A|B)ρ ≡ H(AB)ρ −H(B)ρ. (30)

The above definition is the most natural one, both because it is straightforward to compute for any
bipartite state and because it obeys many relations that the classical conditional entropy obeys
(such as chaining rules and conditioning reduces entropy). We explore many of these relations in
the forthcoming sections. For now, we state “conditioning cannot increase entropy” as the following
theorem and tackle its proof later on after developing a few more tools.

Theorem 12 (Conditioning Does Not Increase Entropy). Consider a bipartite quantum state ρAB.
Then the following inequality applies to the marginal entropy H(A)ρ and the conditional quantum
entropy H(A|B)ρ:

H(A)ρ ≥ H(A|B)ρ. (31)

We can interpret the above inequality as stating that conditioning cannot increase entropy, even if
the conditioning system is quantum.

4.1 Conditional Quantum Entropy for Classical–Quantum States

A classical–quantum state is an example of a state for which conditional quantum entropy behaves
as in the classical world. Suppose that two parties share a classical–quantum state ρXB of the form
in (18). The system X is classical and the system B is quantum, and the correlations between these
systems are entirely classical, determined by the probability distribution pX(x). Let us calculate
the conditional quantum entropy H(B|X)ρ for this state:

H(B|X)ρ = H(XB)ρ −H(X)ρ (32)

= H(X)ρ +
∑
x

pX(x)H(ρxB)−H(X)ρ (33)

=
∑
x

pX(x)H(ρxB). (34)

The first equality follows from Definition 11. The second equality follows from Theorem 10, and
the final equality results from algebra.

The above form for conditional entropy is completely analogous with the classical formula and holds
whenever the conditioning system is classical.

4.2 Negative Conditional Quantum Entropy

One of the properties of the conditional quantum entropy in Definition 11 that seems counterintu-
itive at first sight is that it can be negative. This negativity holds for an ebit |Φ+〉AB shared between
Alice and Bob. The marginal state on Bob’s system is the maximally mixed state πB. Thus, the
marginal entropy H(B) is equal to one, but the joint entropy vanishes, and so the conditional
quantum entropy H(A|B) = −1.
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What do we make of this result? Well, this is one of the fundamental differences between the
classical world and the quantum world, and perhaps is the very essence of the departure from an
informational standpoint. The informational statement is that we can sometimes be more certain
about the joint state of a quantum system than we can be about any one of its individual parts,
and this is the reason that conditional quantum entropy can be negative. This is in fact the same
observation that Schrödinger made concerning entangled states:

“When two systems, of which we know the states by their respective representatives,
enter into temporary physical interaction due to known forces between them, and when
after a time of mutual influence the systems separate again, then they can no longer be
described in the same way as before, viz. by endowing each of them with a representative
of its own. I would not call that one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines of thought. By
the interaction the two representatives [the quantum states] have become entangled.
Another way of expressing the peculiar situation is: the best possible knowledge of a
whole does not necessarily include the best possible knowledge of all its parts, even
though they may be entirely separate and therefore virtually capable of being ‘best
possibly known,’ i.e., of possessing, each of them, a representative of its own. The lack
of knowledge is by no means due to the interaction being insufficiently known — at
least not in the way that it could possibly be known more completely — it is due to the
interaction itself.”

5 Coherent Information

Negativity of the conditional quantum entropy is so important in quantum information theory
that we even have an information quantity and a special notation to denote the negative of the
conditional quantum entropy:

Definition 13 (Coherent Information). The coherent information I(A〉B)ρ of a bipartite state
ρAB ∈ D(HA ⊗HB) is as follows:

I(A〉B)ρ ≡ H(B)ρ −H(AB)ρ. (35)

You should immediately notice that this quantity is the negative of the conditional quantum entropy
in Definition 11, but it is perhaps more useful to think of the coherent information not merely as the
negative of the conditional quantum entropy, but as an information quantity in its own right. This
is why we employ a separate notation for it. The “I” is present because the coherent information
is an information quantity that measures quantum correlations, much like the mutual information
does in the classical case. For example, we have already seen that the coherent information of an
ebit is equal to one. Thus, it is measuring the extent to which we know less about part of a system
than we do about its whole. Perhaps surprisingly, the coherent information obeys a quantum
data-processing inequality, which gives further support for it having an “I” present in its notation.
The Dirac symbol “〉” is present to indicate that this quantity is a quantum information quantity,
having a good meaning really only in the quantum world. The choice of “〉” over “〈” also indicates
a directionality from Alice to Bob, and this notation will make more sense when we begin to discuss
the coherent information of a quantum channel.
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Exercise 14. Let ρAB ∈ D(HA ⊗ HB). Consider a purification |ψ〉ABE of this state to some
environment system E. Show that

I(A〉B)ρ = H(B)ψ −H(E)ψ. (36)

Thus, there is a sense in which the coherent information measures the difference in the uncertainty
of Bob and the uncertainty of the environment.

Exercise 15 (Duality of Conditional Entropy). Show that −H(A|B)ρ = I(A〉B)ρ = H(A|E)ψ for
the purification in the above exercise.

The coherent information can be both negative or positive depending on the bipartite state for
which we evaluate it, but it cannot be arbitrarily large or arbitrarily small. The following theorem
places a useful bound on its absolute value.

Theorem 16. Let ρAB ∈ D(HA ⊗HB). The following bound applies to the absolute value of the
conditional entropy H(A|B)ρ:

|H(A|B)ρ| ≤ log dim(HA). (37)

The bounds are saturated for ρAB = πA ⊗ σB, where πA is the maximally mixed state and σB ∈
D(HB), and for ρAB = ΦAB (the maximally entangled state).

Proof. We first prove the inequality H(A|B)ρ ≤ log dim(HA) in two steps:

H(A|B)ρ ≤ H(A)ρ (38)

≤ log dim(HA). (39)

The first inequality follows because conditioning reduces entropy (Theorem 12), and the second
inequality follows because the maximum value of the entropy H(A)ρ is log dim(HA). We now prove
the inequality H(A|B)ρ ≥ − log dim(HA). Consider a purification |ψ〉EAB of the state ρAB. We
then have that

H(A|B)ρ = −H(A|E)ψ (40)

≥ −H(A)ρ (41)

≥ − log dim(HA). (42)

The first equality follows from Exercise 15. The first and second inequalities follow by the same
reasons as the inequalities in the previous paragraph.

Exercise 17 (Conditional Coherent Information). Consider a tripartite state ρABC . Show that

I(A〉BC)ρ = I(A〉B|C)ρ, (43)

where I(A〉B|C)ρ ≡ H(B|C)ρ −H(AB|C)ρ is the conditional coherent information.

Exercise 18 (Conditional Coherent Information of a Classical–Quantum State). Suppose we have
a classical–quantum state σXAB where

σXAB =
∑
x

pX(x)|x〉〈x|X ⊗ σxAB, (44)

pX is a probability distribution on a finite alphabet X and σxAB ∈ D(HA⊗HB) for all x ∈ X . Show
that

I(A〉BX)σ =
∑
x

pX(x)I(A〉B)σx . (45)
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6 Quantum Mutual Information

The standard informational measure of correlations in the classical world is the mutual information,
and such a quantity plays a prominent role in measuring classical and quantum correlations in the
quantum world as well.

Definition 19 (Quantum Mutual Information). The quantum mutual information of a bipartite
state ρAB ∈ D(HA ⊗HB) is defined as follows:

I(A;B)ρ ≡ H(A)ρ +H(B)ρ −H(AB)ρ. (46)

The following relations hold for quantum mutual information, in analogy with the classical case:

I(A;B)ρ = H(A)ρ −H(A|B)ρ (47)

= H(B)ρ −H(B|A)ρ. (48)

These immediately lead to the following relations between quantum mutual information and the
coherent information:

I(A;B)ρ = H(A)ρ + I(A〉B)ρ (49)

= H(B)ρ + I(B〉A)ρ. (50)

The theorem below gives a fundamental lower bound on the quantum mutual information—we
merely state it for now and give a full proof later.

Theorem 20 (Non-Negativity of Quantum Mutual Information). The quantum mutual information
I(A;B)ρ of any bipartite quantum state ρAB is non-negative:

I(A;B)ρ ≥ 0. (51)

Exercise 21 (Conditioning Does Not Increase Entropy). Show that non-negativity of quantum
mutual information implies that conditioning does not increase entropy (Theorem 12).

Exercise 22 (Bound on Quantum Mutual Information). Let ρAB ∈ D(HA ⊗HB). Prove that the
following bound applies to the quantum mutual information:

I(A;B)ρ ≤ 2 log [min {dim(HA), dim(HB)}] . (52)

What is an example of a state that saturates the bound?

7 Conditional Quantum Mutual Information

We define the conditional quantum mutual information I(A;B|C)ρ of any tripartite state ρABC ∈
D(HA ⊗HB ⊗HC) similarly to how we did in the classical case:

I(A;B|C)ρ ≡ H(A|C)ρ +H(B|C)ρ −H(AB|C)ρ. (53)

In what follows, we sometimes abbreviate “conditional quantum mutual information” as CQMI.

One can exploit the above definition and the definition of quantum mutual information to prove a
chain rule for quantum mutual information.
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Property 23 (Chain Rule for Quantum Mutual Information). The quantum mutual information
obeys a chain rule:

I(A;BC)ρ = I(A;B)ρ + I(A;C|B)ρ. (54)

The interpretation of the chain rule is that we can build up the correlations between A and BC in
two steps: in a first step, we build up the correlations between A and B, and now that B is available
(and thus conditioned on), we build up the correlations between A and C.

Exercise 24. Use the chain rule for quantum mutual information to prove that

I(A;BC)ρ = I(AC;B)ρ + I(A;C)ρ − I(B;C)ρ. (55)

7.1 Non-negativity of CQMI

In the classical world, non-negativity of conditional mutual information follows trivially from non-
negativity of mutual information. The proof of non-negativity of conditional quantum mutual
information is far from trivial in the quantum world, unless the conditioning system is classical
(see Exercise 26). It is a foundational result that non-negativity of this quantity holds because
so much of quantum information theory rests upon this theorem’s shoulders (in fact, we could
say that this inequality is one of the “bedrocks” of quantum information theory). The list of
its corollaries includes the quantum data-processing inequality, the answers to some additivity
questions in quantum Shannon theory, the Holevo bound, and others. The proof of Theorem 25
follows directly from monotonicity of quantum relative entropy (Theorem 31), which we prove later.
In fact, it is possible to show that monotonicity of quantum relative entropy follows from strong
subadditivity as well, so that these two entropy inequalities are essentially equivalent statements.

Theorem 25 (Non-Negativity of CQMI). Let ρABC ∈ D(HA ⊗HB ⊗HC). Then the conditional
quantum mutual information is non-negative:

I(A;B|C)ρ ≥ 0. (56)

This condition is equivalent to the strong subadditivity inequality, so we also refer to this entropy
inequality as strong subadditivity.

Exercise 26 (CQMI of Classical–Quantum States). Consider a classical–quantum state σXAB of
the form in (44). Prove the following relation:

I(A;B|X)σ =
∑
x

pX(x)I(A;B)σx . (57)

Conclude that non-negativity of conditional quantum mutual information is trivial in this special
case in which the conditioning system is classical, simply by exploiting non-negativity of quantum
mutual information (Theorem 20).

Exercise 27 (Conditioning Does Not Increase Entropy). Let ρABC ∈ D(HA ⊗ HB ⊗ HC). Show
that Theorem 25 is equivalent to the following stronger form of Theorem 12:

H(B|C)ρ ≥ H(B|AC)ρ. (58)
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