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1 Overview

In the last lecture we discussed more general models of measurements, the POVM formalism,
product states, separable states, and the partial trace operation.

The evolution of a quantum state is never perfect. In this lecture, we discuss the most general
approach to understanding quantum evolutions: the axiomatic approach. In this powerful approach,
we start with three physically reasonable axioms that should hold for any quantum evolution and
then deduce a set of mathematical constraints that any quantum evolution should satisfy (this is
known as the Choi-Kraus theorem). For the rest of the course, we will refer to quantum evolutions
satisfying these constraints as quantum channels.

2 Axiomatic Approach to Noisy Quantum Evolutions

We now discuss a powerful approach to understanding quantum physical evolutions called the
axiomatic approach. Here we make three physically reasonable assumptions that any quantum
evolution should satisfy and then prove that these axioms imply mathematical constraints on the
form of any quantum physical evolution.

All of the constraints we impose are motivated by the reasonable requirement for the output of
the evolution to be a quantum state (density operator) if the input to the evolution is a quantum
state (density operator). An important assumption to clarify at the outset is that we are viewing
a quantum physical evolution as a “black box,” meaning that Alice can prepare any state that
she wishes before the evolution begins, including pure states or mixed states. Critically, we even
allow her to input one share of an entangled state. This is a standard assumption in quantum
information theory, but one could certainly question whether this assumption is reasonable. If we
do accept this criterion as physically reasonable, then the Choi-Kraus representation theorem for
quantum evolutions follows as a consequence.

Notation 1 (Density Operators and Linear Operators). Let D(H) denote the space of density
operators acting on a Hilbert space H, let B(H) denote the space of square linear operators acting
on H, and let B(HA,HB) denote the space of linear operators taking a Hilbert space HA to a Hilbert
space HB.

Throughout this development, we let N denote a map which takes density operators in D(HA)
to those in D(HB). In general, the respective input and output Hilbert spaces HA and HB need
not be the same. Implicitly, we have already stated a first physically reasonable requirement that
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we impose on N , namely, that N (ρA) ∈ D(HB) if ρA ∈ D(HA). Extending this requirement, we
demand that N should be convex linear when acting on D(HA):

N (λρA + (1− λ)σA) = λN (ρA) + (1− λ)N (σA), (1)

where ρA, σA ∈ D(HA) and λ ∈ [0, 1].

The physical interpretation of this convex-linearity requirement is in terms of repeated experiments.
Suppose a large number of experiments are conducted in which identical quantum systems are
prepared in the state ρA for a fraction λ of the experiments and in the state σA for the other
fraction 1−λ of the experiments. Suppose further that it is not revealed which states are prepared
for which experiments. Before you are allowed to perform measurements on each system, the
evolution N is applied to each of the systems. The density operator characterizing the state of
each system for these experiments is then N (λρA + (1 − λ)σA). You are then allowed to perform
a measurement on each system, which after a large number of experiments allow you to infer that
the density operator is N (λρA + (1− λ)σA). Now, in principle, it could have been revealed which
fraction of the experiments had the state ρA prepared and which fraction had σA prepared. In this
case, the density operator describing the ρA experiments would be N (ρA) and that describing the
σA experiments would be N (σA). So, it is reasonable to expect that the statistics observed in your
measurement outcomes in the first scenario would be consistent with those observed in the second
scenario, and this is the physical statement that the requirement (1) makes.

Now, it is mathematically convenient to extend the domain and range of the quantum channel
to apply not only to density operators but to all linear operators. To this end, it is possible to
find a unique linear extension Ñ of any quantum evolution N defined as above (originally defined
exclusively by its action on density operators and satisfying convex linearity). See Section 3 for a
full development of this idea. Thus, it is reasonable to associate this unique linear extension Ñ
to the quantum physical evolution N mathematically, and in what follows (and for the rest of the
book), we simply identify a physical evolution N with its unique linear extension Ñ , and this is
what we call a quantum channel. For these reasons, we now impose that any quantum channel N
is linear:

Criterion 2 (Linearity). A quantum channel N is a linear map:

N (αXA + βYA) = αN (XA) + βN (YA), (2)

where XA, YA ∈ B(HA) and α, β ∈ C.

We have already demanded that quantum physical evolutions should take density operators to
density operators. Combining with linearity (in particular, scale invariance) implies that quantum
channels should preserve the class of positive semi-definite operators. That is, they should be
positive maps, as defined below:

Definition 3 (Positive Map). A linear map M : B(HA)→ B(HB) is positive if M(XA) is positive
semi-definite for all positive semi-definite XA ∈ B(HA).

If we were dealing with classical systems, then positivity would be sufficient to describe the class of
physical evolutions. However, above we argued that we are working in the “black box” picture of
quantum physical evolutions, and here, in principle, we allow for Alice to prepare the input system
A to be one share of an arbitrary two-party state ρRA ∈ D(HR⊗HA), where R is a reference system
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of arbitrary size. So this means that the evolution consisting of the identity acting on the reference
system R and the map N acting on system A should take ρRA to a density operator on systems R
and B. Let idR⊗NA→B denote this evolution, where idR denotes the identity superoperator acting
on the system R.

How do we describe the evolution idR⊗NA→B mathematically? Let XRA be an arbitrary operator
acting on HR ⊗ HA, and let {|i〉R} be an orthonormal basis for HR. Then we can expand XRA

with respect to this basis as follows:

XRA =
∑
i,j

|i〉〈j|R ⊗Xi,j
A , (3)

and the action of idR⊗NA→B on XRA (for linear N ) is defined as follows:

(idR⊗NA→B) (XRA) = (idR⊗NA→B)

∑
i,j

|i〉〈j|R ⊗Xi,j
A

 (4)

=
∑
i,j

(idR⊗NA→B)
(
|i〉〈j|R ⊗Xi,j

A

)
(5)

=
∑
i,j

idR (|i〉〈j|R)⊗NA→B

(
Xi,j

A

)
(6)

=
∑
i,j

|i〉〈j|R ⊗NA→B

(
Xi,j

A

)
. (7)

That is, the identity superoperator idR has no effect on the R system. The above development
leads to the notion of a linear map being completely positive and our next criterion for any quantum
physical evolution:

Definition 4 (Completely Positive Map). A linear map M : B(HA) → B(HB) is completely
positive if idR⊗M is a positive map for a reference system R of arbitrary size.

Criterion 5 (Complete Positivity). A quantum channel is a completely positive map.

There is one last requirement that we impose for quantum physical evolutions, known as trace
preservation. This requirement again stems from the reasonable constraint that N should map
density operators to density operators. That is, it should be the case that Tr{ρA} = Tr{N (ρA)} = 1
for all input density operators ρA. However, now that have argued for linearity of every quantum
physical evolution, trace preservation on density operators combined with linearity implies that
quantum channels are trace preserving on the set of all operators. This is due to the fact that
there are sets of density operators that form a basis for B(HA). Indeed, one such basis of density
operators is as follows:

ρx,yA =


|x〉〈x|A if x = y

1
2 (|x〉A + |y〉A) (〈x|A + 〈y|A) if x < y
1
2 (|x〉A + i|y〉A) (〈x|A − i〈y|A) if x > y

. (8)

Consider that for all x, y such that x < y, the following holds

|x〉〈y|A =

(
ρx,yA −

1

2
ρx,xA − 1

2
ρy,yA

)
− i
(
ρy,xA −

1

2
ρx,xA − 1

2
ρy,yA

)
, (9)

|y〉〈x|A =

(
ρx,yA −

1

2
ρx,xA − 1

2
ρy,yA

)
+ i

(
ρy,xA −

1

2
ρx,xA − 1

2
ρy,yA

)
, (10)
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so that we can represent any operator XA as a linear combination of density operators from the
set
{
ρx,yA

}
. This leads to our final criterion for quantum channels:

Criterion 6 (Trace Preservation). A quantum channel is trace preserving, in the sense that
Tr{XA} = Tr{N (XA)} for all XA ∈ B(HA).

Definition 7 (Quantum Channel). A quantum channel is a linear, completely positive, trace pre-
serving map, corresponding to a quantum physical evolution.

Criteria 2, 5, and 6 detailed above lead naturally to the Choi-Kraus representation theorem, which
states that a map satisfies all three criteria if and only if it takes a particular form according to a
Choi-Kraus decomposition:

Theorem 8 (Choi-Kraus). A map N : B(HA) → B(HB) (denoted also by NA→B) is linear,
completely positive, and trace-preserving if and only if it has a Choi-Kraus decomposition as follows:

NA→B(XA) =
d−1∑
l=0

VlXAV
†
l , (11)

where XA ∈ B(HA), Vl ∈ B(HA,HB) for all l ∈ {0, . . . , d− 1},

d−1∑
l=0

V †l Vl = IA, (12)

and d need not be any larger than dim(HA) dim(HB).

Before we delve into a proof, it is helpful to give a sketch. There is an easier part and a more
challenging part of the proof. For the more challenging part, a helpful tool is an operator called
the Choi operator:

Definition 9 (Choi Operator). Let HR and HA be isomorphic Hilbert spaces, and let {|i〉R} and
{|i〉A} be orthonormal bases for HR and HA, respectively. Let HB be some other Hilbert space, and
let N : B(HA)→ B(HB) be a linear map (abbreviated as NA→B). The Choi operator corresponding
to NA→B and the bases {|i〉R} and {|i〉A} is defined as the following operator:

(idR⊗NA→B) (|Γ〉 〈Γ|RA) =

dA−1∑
i,j=0

|i〉 〈j|R ⊗NA→B(|i〉 〈j|A), (13)

where dA ≡ dim(HA) and |Γ〉RA is an unnormalized maximally entangled vector, as defined in (??):

|Γ〉RA ≡
dA−1∑
i=0

|i〉R ⊗ |i〉A. (14)

If NA→B is a completely positive map, then the Choi operator is positive semi-definite. This follows
as a direct consequence of Definition 4 and the fact that |Γ〉 〈Γ|RA is positive semi-definite. The
converse is true as well, and Exercise 11 asks you to verify this. The converse is in some sense
a much more powerful statement. Definition 4 suggests that we would have to check a seemingly
infinite number of cases in order to verify whether a given linear map is completely positive, but
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the converse statement establishes that we need to check only one condition: whether the Choi
operator is positive semi-definite.

Why else is the Choi operator a useful tool? One other important reason is that it encodes how a
quantum channel acts on any possible input operator XA, and thus specifies the channel completely.
Consider that we can expand the Choi operator as a matrix of matrices (of total size dAdB×dAdB)
in the following way, by exploiting properties of the tensor product:

NA→B(|0〉〈0|A) NA→B(|0〉〈1|A) · · · NA→B(|0〉 〈dA − 1|A)
NA→B(|1〉〈0|A) NA→B(|1〉〈1|A) · · · NA→B(|1〉 〈dA − 1|A)

...
...

. . .
...

NA→B(|dA − 1〉〈0|A) NA→B(|dA − 1〉〈1|A) · · · NA→B(|dA − 1〉 〈dA − 1|A)

 . (15)

So if we would like to figure out how the channel NA→B acts on an input operator XA, we can first
expand XA with respect to the orthonormal basis {|i〉A} as XA =

∑
i,j x

i,j |i〉〈j|A and then apply
the channel, using linearity:

NA→B(XA) = NA→B

∑
i,j

xi,j |i〉〈j|A

 =
∑
i,j

xi,jNA→B(|i〉〈j|A). (16)

So the procedure is to expand XA as above, multiple the (i, j) coefficient xi,j with the (i, j) entry
in the Choi operator, and then sum these operators over all indices i and j.

Proof of Theorem 8. We first prove the easier “if-part” of the theorem. So let us suppose that
NA→B has the form in (11) and that the condition in (12) holds as well. Then NA→B is clearly a
linear map. It is completely positive because (idR⊗NA→B)(XRA) ≥ 0 if XRA ≥ 0 when NA→B has
the form in (11), and this holds for a reference system R of arbitrary size. That is, consider from
(7) that {IR ⊗ Vl} is a set of Kraus operators for the extended channel idR⊗NA→B and thus

(idR⊗NA→B)(XRA) =
d−1∑
l=0

(IR ⊗ Vl)XRA(IR ⊗ V †l ) (17)

=
d−1∑
l=0

(IR ⊗ Vl)XRA(IR ⊗ Vl)†. (18)

We know that (IR ⊗ Vl)XRA(IR ⊗ Vl)† ≥ 0 for all l when XRA ≥ 0, and the same is true for the
sum. Trace preservation follows because

Tr {NA→B(XA)} = Tr

{
d−1∑
l=0

VlXAV
†
l

}
(19)

= Tr

{
d−1∑
l=0

V †l VlXA

}
(20)

= Tr {XA} , (21)

where the second line is from linearity and cyclicity of trace and the last line follows from the
condition in (12).
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We now prove the more difficult “only-if” part. Let dA ≡ dim(HA) and dB ≡ dim(HB). Consider
that we can diagonalize the Choi operator as given in Definition 9, because it is positive semi-
definite:

NA→B (|Γ〉 〈Γ|RA) =

d−1∑
l=0

|φl〉 〈φl|RB , (22)

where d ≤ dAdB is the Choi rank of the map NA→B. (This decomposition does not necessarily
have to be such that the vectors {|φl〉RB} are orthonormal, but keep in mind that there is always
a choice such that d ≤ dAdB.) Consider by inspecting (13) that

(〈i|R ⊗ IB) (NA→B (|Γ〉 〈Γ|RA)) (|j〉R ⊗ IB) = NA→B (|i〉〈j|) . (23)

Now, consider that for any bipartite vector |φ〉RB, we can expand it in terms of an orthonormal
basis {|j〉B} and the basis {|i〉R} given above:

|φ〉RB =

dA−1∑
i=0

dB−1∑
j=0

αij |i〉R ⊗ |j〉B. (24)

Let VA→B denote the following linear operator:

VA→B ≡
dA−1∑
i=0

dB−1∑
j=0

αi,j |j〉B〈i|A, (25)

where {|i〉A} is the orthonormal basis given above. Then we see that

(IR ⊗ VA→B) |Γ〉RA =

dA−1∑
i=0

dB−1∑
j=0

αi,j |j〉B 〈i|A
dA−1∑
k=0

|k〉R ⊗ |k〉A (26)

=

dA−1∑
i=0

dB−1∑
j=0

dA−1∑
k=0

αi,j |k〉R ⊗ |j〉B 〈i|k〉A (27)

=

dA−1∑
i=0

dB−1∑
j=0

αij |i〉R ⊗ |j〉B (28)

= |φ〉RB . (29)

So this means that for all bipartite vectors |φ〉RB, we can find a linear operator VA→B such that
(IR ⊗ VA→B) |Γ〉RA = |φ〉RB. Consider also that

〈i|R |φ〉RB = 〈i|R (IR ⊗ VA→B) |Γ〉RA (30)

= VA→B|i〉A. (31)

Applying this to our case of interest, for each l, we can write

|φl〉RB = IR ⊗ (Vl)A→B |Γ〉RA , (32)
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where (Vl)A→B is some linear operator of the form in (25). After making this observation, we
realize that it is possible to write

NA→B (|i〉〈j|) = (〈i|R ⊗ IB) (NA→B (|Γ〉 〈Γ|RA)) (|j〉R ⊗ IB) (33)

= (〈i|R ⊗ IB)
d−1∑
l=0

|φl〉 〈φl|RB (|j〉R ⊗ IB) (34)

=
d−1∑
l=0

[(〈i|R ⊗ IB) |φl〉RB] [〈φl|RB (|j〉R ⊗ IB)] (35)

=
d−1∑
l=0

Vl|i〉〈j|AV †l . (36)

By linearity of the map NA→B, exploiting the above result, and the development in (16), it follows
that the action of NA→B on any input operator XA can be written as follows:

NA→B(XA) =
d−1∑
l=0

VlXAV
†
l . (37)

To prove the condition in (12), let us begin by exploiting the fact that the map NA→B is trace
preserving, so that

Tr {NA→B (|i〉〈j|A)} = Tr {|i〉〈j|A} = δij . (38)

for all operators {|i〉〈j|A}i,j . But consider also that

Tr {NA→B (|i〉〈j|A)} = Tr

{∑
l

Vl (|i〉〈j|A)V †l

}
(39)

= Tr

{∑
l

V †l Vl (|i〉〈j|A)

}
(40)

= 〈j|A
∑
l

V †l Vl |i〉A . (41)

Thus, in order to have consistency with (38), we require that 〈j|A
∑

l V
†
l Vl|i〉A = δi,j , or equivalently,

for (12) to hold.

Remark 10. If the decomposition in (22) is a spectral decomposition, then it follows that the Kraus
operators {Vl} are orthogonal with respect to the Hilbert–Schmidt inner product:

Tr
{
V †l Vk

}
= Tr

{
V †l Vl

}
δl,k. (42)

This follows from the fact that

δl,k 〈φl|φl〉 = 〈φl|φk〉 (43)

= 〈Γ|RB

[
IR ⊗

(
V †l Vk

)
B

]
|Γ〉RB (44)

= Tr
{
V †l Vk

}
, (45)

where in the third line we have applied the result of Exercise ??.
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Exercise 11. Prove that a linear map N is completely positive if its corresponding Choi operator,
as defined in Definition 9, is a positive semi-definite operator. (Hint: Use the fact that any positive
semi-definite operator can be diagonalized, the fact that idR⊗N is linear, and use something similar
to (26)–(29)).

3 Unique Linear Extension of a Quantum Physical Evolution

Recall in Section 2 that we argued on physical grounds how any quantum physical evolution N
should be convex linear when acting on the space D(HA) of density operators:

N (λρA + (1− λ)σA) = λN (ρA) + (1− λ)N (σA), (46)

where ρA, σA ∈ D(HA) and λ ∈ [0, 1]. Here we show how to construct a unique linear extension Ñ of
N , whose action is well defined on the space of all operators XA ∈ B(HA). The development follows
the approach given in Proposition 2.30 of “The Mathematical Language of Quantum Theory: From
Uncertainty to Entanglement,” by Teiko Heinosaari and Mario Ziman.

We first define Ñ (0) ≡ 0, where the inputs and outputs are understood to be the zero operator.
We next extend the action of N to all positive semi-definite operators PA 6= 0 as follows:

Ñ (PA) ≡ Tr{PA}N ([Tr{PA}]−1 PA), (47)

where it is clear that this is well defined from N because [Tr{PA}]−1 PA is a density operator. Now
consider for a constant s > 0 that we have scale invariance:

Ñ (sPA) = Tr{sPA}N ([Tr{sPA}]−1 sPA) (48)

= sTr{PA}N ([Tr{PA}]−1 PA) (49)

= sÑ (PA). (50)

Furthermore, for two non-zero positive semi-definite operators PA and QA, we have the following
additivity relation:

Ñ (PA +QA) = Ñ (PA) + Ñ (QA), (51)

which follows because

Ñ (PA +QA)

= Tr{PA +QA}N ([Tr{PA +QA}]−1 (PA +QA)) (52)

= Tr{PA +QA}N
(

1

Tr{PA +QA}
PA +

1

Tr{PA +QA}
QA

)
(53)

= Tr{PA +QA}N
(

Tr{PA}
Tr{PA +QA}

PA

Tr{PA}
+

Tr{QA}
Tr{PA +QA}

QA

Tr{QA}

)
(54)

= Tr{PA}N
(

PA

Tr{PA}

)
+ Tr{QA}N

(
QA

Tr{QA}

)
(55)

= Ñ (PA) + Ñ (QA), (56)

where in the fourth equality, we exploited convex linearity of the quantum physical evolution N .
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For the next step, recall that any Hermitian operator TA can be written as a linear combination of a
positive part and a negative part: TA = T+

A −T
−
A , where both T+

A and T−A are positive semi-definite

operators. So we define the action of Ñ on any Hermitian operator TA as follows:

Ñ (TA) ≡ Ñ (T+
A )− Ñ (T−A ). (57)

To see that the following additivity relation holds for all Hermitian SA and TA

Ñ (SA + TA) = Ñ (SA) + Ñ (TA), (58)

consider that
SA + TA = (SA + TA)+ − (SA + TA)−, (59)

while also
SA + TA = S+

A + T+
A − S

−
A − T

−
A . (60)

Equating both sides, we find that

(SA + TA)+ + S−A + T−A = (SA + TA)− + S+
A + T+

A . (61)

Now we exploit this equality, (51), and the definition in (57) to establish (58).

The final step is to extend the action of Ñ to all operators XA ∈ B(HA). Here, we recall that any
linear operator can be written in terms of a real and imaginary part as follows:

XR
A ≡

1

2

(
XA +X†A

)
, XI

A ≡
1

2i

(
XA −X†A

)
, (62)

where by inspection, XR
A and XI

A are Hermitian operators. So we define

Ñ (XA) ≡ Ñ (XR
A ) + iÑ (XI

A). (63)

This completes the development of a well defined linear extension Ñ of the quantum physical
evolution N .

To show that it is unique, recall that any operator XA can be expanded as a linear combination of
density operators from the basis {ρx,yA }, defined in (8), as follows:

XA =
∑
x,y

αx,yρ
x,y
A , (64)

where αx,y ∈ C for all x and y. It is straightforward to show from the above development that

Ñ (XA) =
∑
x,y

αx,yN (ρx,yA ). (65)

Now suppose that N ′ is some other linear map for which N ′(ρA) = N (ρA) for all ρA ∈ D(HA).
Then the following equality holds for all XA ∈ B(HA):

N ′(XA) =
∑
x,y

αx,yN ′(ρx,yA ) =
∑
x,y

αx,yN (ρx,yA ) = Ñ (XA). (66)

As a result, N ′ = Ñ , given that they have the same action on every operator XA ∈ B(HA).
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