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1 Overview

In the last lecture we discussed Bell’s theorem and the CHSH game, and we showed how a quantum
strategy can outperform a classical strategy at winning the CHSH game (in particular, we showed
that a classical strategy can win the CHSH game with probability 3/4 and no larger, whereas a
quantum strategy can win with probability cos2(π/8) ≈ 0.85). We also proved Tsirelson’s bound,
which demonstrates that the quantum winning probability cannot exceed cos2(π/8) ≈ 0.85.

In this lecture we will discuss the Schmidt decomposition, which is one of the most important the-
orems for understanding pure bipartite states. We will also venture into the noisy quantum theory,
discussing density operators, evolution of density operators, and measurement in the noisy quantum
theory. The material is coming from Sections 3.7.4, 4.1, and 4.2 of http://markwilde.com/qit-notes.pdf
.

2 Schmidt decomposition

The Schmidt decomposition is one of the most important tools for analyzing bipartite pure states
in quantum information theory. The Schmidt decomposition shows that it is possible to decompose
any pure bipartite state as a superposition of corresponding states. We state this result formally
as the following theorem:

Theorem 1 (Schmidt decomposition). Suppose that we have a bipartite pure state,

|ψ〉AB ∈ HA ⊗HB. (1)

Then it is possible to express this state as follows:

|ψ〉AB ≡
d−1∑
i=0

λi |i〉A |i〉B , (2)

where the amplitudes λi are real, strictly positive, and normalized so that
∑

i λ
2
i = 1, the states

{|i〉A} form an orthonormal basis for system A, the states {|i〉B} form an orthonormal basis for the
system B. The Schmidt rank d of a bipartite state is equal to the number of Schmidt coefficients λi
in its Schmidt decomposition and satisfies

d ≤ min {dim(HA),dim(HB)} . (3)
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Proof. This is essentially a restatement of the singular value decomposition of a matrix. Consider
an arbitrary bipartite pure state |ψ〉AB ∈ HA ⊗HB. Let dA ≡ dim(HA) and dB ≡ dim(HB). We
can express |ψ〉AB as follows:

|ψ〉AB =

dA−1∑
j=0

dB−1∑
k=0

αj,k |j〉A |k〉B , (4)

for some amplitudes αj,k and some orthonormal bases {|j〉A} and {|k〉B} on the respective systems
A and B. Let us write the matrix formed by the coefficients αj,k as some dA × dB matrix A where

[A]j,k = αj,k. (5)

Since every matrix has a singular value decomposition, we can write A as

A = UΛV, (6)

where U is a dA × dA unitary matrix, V is a dB × dB unitary matrix, and Λ is a dA × dB matrix
with d real, strictly positive numbers λi along the diagonal and zeros elsewhere. Let us write the
matrix elements of U as uj,i and those of V as vi,k. The above matrix equation is then equivalent
to the following set of equations:

αj,k =
d−1∑
i=0

uj,iλivi,k. (7)

Let us make this substitution into the expression for the state in (4):

|ψ〉AB =

dA−1∑
j=0

dB−1∑
k=0

(
d−1∑
i=0

uj,iλivi,k

)
|j〉A |k〉B . (8)

Readjusting some terms by exploiting the properties of the tensor product, we find that

|ψ〉AB =

d−1∑
i=0

λi

dA−1∑
j=0

uj,i |j〉A

⊗(dB−1∑
k=0

vi,k |k〉B

)
(9)

=
d−1∑
i=0

λi |i〉A |i〉B , (10)

where we define the orthonormal basis on the A system as |i〉A ≡
∑

j uj,i |j〉A and we define the
orthonormal basis on the B system as |i〉B ≡

∑
k vi,k |k〉B. This final step completes the proof of

the theorem. You can verify that the set of states {|i〉A} form an orthonormal basis (the proof for
the set of states {|i〉B} is similar).

Remark 2. The Schmidt decomposition applies not only to bipartite systems but to any number
of systems where we can make a bipartite cut of the systems. For example, suppose that there is a
state |φ〉ABCDE on systems ABCDE. We could say that AB are part of one system and CDE are
part of another system and write a Schmidt decomposition for this state as follows:

|φ〉ABCDE =
∑
y

√
pY (y) |y〉AB |y〉CDE , (11)

where {|y〉AB} is an orthonormal basis for the joint system AB and {|y〉CDE} is an orthonormal
basis for the joint system CDE.
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3 Noisy Quantum States

We generally may not have perfect knowledge of a prepared quantum state. Suppose a third party,
Bob, prepares a state for us and only gives us a probabilistic description of it. We may only know
that Bob selects the state |ψx〉 with a certain probability pX (x). Our description of the state is
then as an ensemble E of quantum states where

E ≡ {pX(x), |ψx〉}x∈X . (12)

In the above, X is a random variable with distribution pX (x). Each realization x of random
variable X belongs to an alphabet X . For our purposes, it is sufficient for us to say that X ≡
{1, . . . , |X |}. Thus, the realization x merely acts as an index, meaning that the quantum state is
|ψx〉 with probability pX(x). We also assume that each state |ψx〉 is a d-dimensional qudit state.

A simple example is the following ensemble:{{
1

3
, |1〉

}
,

{
2

3
, |3〉

}}
. (13)

The states |1〉 and |3〉 are in a four-dimensional Hilbert space with basis states

{|0〉 , |1〉 , |2〉 , |3〉} . (14)

The interpretation of this ensemble is that the state is |1〉 with probability 1/3 and the state is |3〉
with probability 2/3.

3.1 The Density Operator

Suppose now that we have the ability to perform a perfect measurement of a system with ensemble
description E in (12). Let Πj be the elements of this projective measurement so that

∑
j Πj = I,

and let J be the random variable that denotes the index j of the measurement outcome. Let us
suppose at first, without loss of generality, that the state in the ensemble is |ψx〉 for some x ∈ X .
Then the Born rule of the noiseless quantum theory states that the conditional probability pJ |X(j|x)
of obtaining measurement result j (given that the state is |ψx〉) is

pJ |X(j|x) = 〈ψx|Πj |ψx〉 , (15)

and the post-measurement state is
Πj |ψx〉√
pJ |X (j|x)

. (16)

But, we would also like to know the actual probability pJ(j) of obtaining measurement result j for
the ensemble description E . By the law of total probability, the unconditional probability pJ(j) is

pJ(j) =
∑
x∈X

pJ |X(j|x)pX(x) (17)

=
∑
x∈X
〈ψx|Πj |ψx〉 pX(x). (18)
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Definition 3 (Trace). The trace Tr {A} of an operator A is

Tr {A} ≡
∑
i

〈i|A |i〉 , (19)

where {|i〉} is some complete, orthonormal basis.

(Observe that the trace operation is linear. It is also independent of which orthonormal basis we
choose.) We can then show the following useful property with the above definition:

Tr {Πj |ψx〉 〈ψx|} =
∑
i

〈i|Πj |ψx〉 〈ψx|i〉 (20)

=
∑
i

〈ψx|i〉 〈i|Πj |ψx〉 (21)

= 〈ψx|

(∑
i

|i〉 〈i|

)
Πj |ψx〉 (22)

= 〈ψx|Πj |ψx〉 . (23)

The last equality uses the completeness relation
∑

i |i〉 〈i| = I. Thus, we continue with the devel-
opment in (18) and show that

pJ(j) =
∑
x∈X

Tr {Πj |ψx〉 〈ψx|} pX(x) (24)

= Tr

{
Πj

∑
x∈X

pX (x) |ψx〉 〈ψx|

}
. (25)

We can rewrite the last equation as follows:

pJ(j) = Tr {Πjρ} , (26)

where we define the density operator ρ as

ρ ≡
∑
x∈X

pX(x) |ψx〉 〈ψx| . (27)

The above operator is known as the density operator because it is the quantum generalization of a
probability density function.

We sometimes refer to the density operator as the expected density operator because there is a sense
in which we are taking the expectation over all of the states in the ensemble in order to obtain the
density operator. We can equivalently write the density operator as follows:

ρ = EX {|ψX〉 〈ψX |} , (28)

where the expectation is with respect to the random variable X. Note that we are careful to use
the notation |ψX〉 instead of the notation |ψx〉 for the state inside of the expectation because the
state |ψX〉 is a random quantum state, random with respect to a classical random variable X.
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3.1.1 Properties of the Density Operator

What are the properties that a given density operator must satisfy? Let us consider taking the
trace of ρ:

Tr {ρ} = Tr

{∑
x∈X

pX(x) |ψx〉 〈ψx|

}
(29)

=
∑
x∈X

pX(x) Tr {|ψx〉 〈ψx|} (30)

=
∑
x∈X

pX(x) 〈ψx|ψx〉 (31)

=
∑
x∈X

pX(x) (32)

= 1. (33)

The above development shows that every density operator should have unit trace because it arises
from an ensemble of quantum states. Every density operator is also positive semi-definite, meaning
that

∀ |ϕ〉 : 〈ϕ| ρ |ϕ〉 ≥ 0. (34)

We write ρ ≥ 0 to indicate that an operator is positive semi-definite. The proof of non-negativity
of any density operator ρ is as follows:

〈ϕ| ρ |ϕ〉 = 〈ϕ|

(∑
x∈X

pX (x) |ψx〉 〈ψx|

)
|ϕ〉 (35)

=
∑
x∈X

pX(x) 〈ϕ|ψx〉 〈ψx|ϕ〉 (36)

=
∑
x∈X

pX(x) |〈ϕ|ψx〉|2 ≥ 0. (37)

The inequality follows because each pX(x) is a probability and is therefore non-negative.

Let us consider taking the conjugate transpose of the density operator ρ:

ρ† =

(∑
x∈X

pX(x) |ψx〉 〈ψx|

)†
(38)

=
∑
x∈X

pX(x) (|ψx〉 〈ψx|)† (39)

=
∑
x∈X

pX(x) |ψx〉 〈ψx| (40)

= ρ. (41)

Every density operator is thus a Hermitian operator as well because the conjugate transpose of ρ
is ρ.
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3.1.2 Ensembles and the Density Operator

Every ensemble has a unique density operator, but the opposite does not necessarily hold: every
density operator does not correspond to a unique ensemble and could correspond to many ensembles.

This last result has profound implications for the predictions of the quantum theory because it is
possible for two or more completely different ensembles to have the same probabilities for measure-
ment results. It also has important implications for quantum Shannon theory as well.

By the spectral theorem, it follows that every density operator ρ has a spectral decomposition in
terms of its eigenstates {|φx〉}x∈{0,...,d−1} because every ρ is Hermitian:

ρ =
d−1∑
x=0

λx |φx〉 〈φx| , (42)

where the coefficients λx are the eigenvalues.

Thus, given any density operator ρ, we can define a “canonical” ensemble {λx, |φx〉} corresponding
to it. This observation is so important for quantum Shannon theory that we see this idea arise
again and again throughout this book.

3.1.3 Density Operator as the State

We can also refer to the density operator as the state of a given quantum system because it is
possible to use it to calculate all of the predictions of the quantum theory. We can make these
calculations without having an ensemble description—all we need is the density operator. The
noisy quantum theory also subsumes the noiseless quantum theory because any state |ψ〉 has a
corresponding density operator |ψ〉 〈ψ| in the noisy quantum theory, and all calculations with this
density operator in the noisy quantum theory give the same results as using the state |ψ〉 in the
noiseless quantum theory. For these reasons, we will say that the state of a given quantum system
is a density operator.

One of the most important states in the noisy quantum theory is the maximally mixed state π.
The maximally mixed state π arises as the density operator of a uniform ensemble of orthogonal
states

{
1
d , |x〉

}
, where d is the dimensionality of the Hilbert space. The maximally mixed state π

is then equal to

π =
1

d

∑
x∈X
|x〉 〈x| = I

d
. (43)

3.2 Noiseless Evolution of an Ensemble

Quantum states can evolve in a noiseless fashion either according to a unitary operator or a mea-
surement. In this section, we determine the noiseless evolution of an ensemble and its corresponding
density operator.
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3.2.1 Noiseless Unitary Evolution of a Noisy State

We first consider noiseless evolution according to some unitary U . Suppose we have the ensemble E
in (12) with density operator ρ. Suppose without loss of generality that the state is |ψx〉. Then the
evolution postulate of the noiseless quantum theory gives that the state after the unitary evolution
is as follows:

U |ψx〉 . (44)

This result implies that the evolution leads to a new ensemble

EU ≡ {pX(x), U |ψx〉}x∈X . (45)

The density operator of the evolved ensemble is

∑
x∈X

pX(x)U |ψx〉 〈ψx|U † = U

(∑
x∈X

pX(x) |ψx〉 〈ψx|

)
U † (46)

= UρU †. (47)

Thus, the above relation shows that we can keep track of the evolution of the density operator ρ,
rather than worrying about keeping track of the evolution of every state in the ensemble E . It
suffices to keep track of only the density operator evolution because this operator is sufficient to
determine the predictions of the quantum theory.

3.2.2 Noiseless Measurement of a Noisy State

In a similar fashion, we can analyze the result of a measurement on a system with ensemble
description E in (12). Suppose that we perform a projective measurement with projection operators
{Πj}j where

∑
j Πj = I. Suppose further without loss of generality that the state in the ensemble

is |ψx〉. Then the noiseless quantum theory predicts that the probability of obtaining outcome j
conditioned on the index x is

pJ |X(j|x) = 〈ψx|Πj |ψx〉 , (48)

and the resulting state is
Πj |ψx〉√
pJ |X (j|x)

. (49)

Supposing that we receive outcome j, then we have a new ensemble:

Ej ≡
{
pX|J (x|j) ,Πj |ψx〉 /

√
pJ |X(j|x)

}
x∈X

. (50)
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The density operator for this ensemble is∑
x∈X

pX|J (x|j) Πj |ψx〉 〈ψx|Πj

pJ |X (j|x)

= Πj

(∑
x∈X

pX|J (x|j)
pJ |X(j|x)

|ψx〉 〈ψx|

)
Πj (51)

= Πj

(∑
x∈X

pJ |X(j|x)pX(x)

pJ |X(j|x)pJ(j)
|ψx〉 〈ψx|

)
Πj (52)

=
Πj

(∑
x∈X pX(x) |ψx〉 〈ψx|

)
Πj

pJ(j)
(53)

=
ΠjρΠj

pJ(j)
. (54)

The second equality follows from applying the Bayes rule:

pX|J (x|j) = pJ |X(j|x)pX (x) /pJ(j). (55)

The above expression gives the evolution of the density operator under a measurement. We can
again employ the law of total probability to compute that pJ(j) is

pJ(j) =
∑
x∈X

pJ |X(j|x)pX(x) (56)

=
∑
x∈X

pX(x) 〈ψx|Πj |ψx〉 (57)

=
∑
x∈X

pX(x) Tr {|ψx〉 〈ψx|Πj} (58)

= Tr

{∑
x∈X

pX(x) |ψx〉 〈ψx|Πj

}
(59)

= Tr {ρΠj} . (60)

We can think of Tr {ρΠj} intuitively as the area of the shadow of ρ onto the space that the
projector Πj projects.
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