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1 Overview

In this lecture, we talk about the issue of transmission of information over a noisy classical channel.
We will start with a simple error correction code example and look at a simple decoding algorithm
for it. We will describe the information processing task for channel coding and at the end look at
an overview of Shannon’s Channel Capacity Theorem. Now we begin with a standard example—
transmitting a single bit of information over a noisy bit-flip channel.

2 Simple Error Correction code (Repetition code)

We start with Alice (sender) and Bob (receiver). We also assume that a noisy classical channel
connects them, so that information transfer is not reliable. Alice and Bob realize that a noisy
channel is not as expensive as a noiseless one, but it still is expensive for them to use. For this
reason, they would like to maximize the amount of information that Alice can communicate reliably
to Bob, where reliable communication implies that there is a negligible probability of error when
transmitting this information.

Figure 1: The figure depicts the action of the bit-flip channel. It preserves the input bit with
probability 1− p and flips it with probability p.

In this lecture, for simplicity, we assume that the channel is a simple noisy bit-flip channel as shown
in figure above. This channel flips the input bit with probability p and leaves it unchanged with
probability 1−p (see Figure 1). When using the channel multiple times, we assume that it behaves
independently from one use to the next. For this reason, we say that multiple uses of the channel
is an i.i.d. channel. This assumption will again be important when we go to the asymptotic regime
of a large number of uses of the channel.
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Channel Output Probability

000 (1− p)3

001, 010, 100 p (1− p)2

011, 110, 101 p2 (1− p)
111 p3

Table 1: The first column gives the eight possible outputs of the noisy bit-flip channel when Alice
encodes a “0” with the majority vote code. The second column gives the corresponding probability
of Bob receiving the particular outputs.

Suppose that Alice and Bob just use the channel as is—Alice just sends plain bits to Bob. This
scheme works reliably only if the probability of bit-flip error vanishes. So, Alice and Bob could
invest their best efforts into engineering the physical channel to make it reliable. But, generally,
it is not possible to engineer a classical channel this way for physical or logistical reasons. For
example, Alice and Bob may only have local computers at their ends and may not have access to
the physical channel because the telephone company may control the channel.

2.1 Encoding Algorithm

To reduce the probability error of transmitting, Alice and Bob can employ a “systems engineering”
solution to this problem rather than an engineering of the physical channel. They can redundantly
encode information in a way such that Bob can have a higher probability of determining what
Alice is sending, effectively reducing the level of noise on the channel. A simple example of this
systems engineering solution is the three-bit majority vote code. Alice and Bob employ the following
encoding:

0→ 000, 1→ 111, (1)

where both “000” and “111” are codewords. Alice transmits the codeword “000” with three inde-
pendent uses of the noisy channel if she really wants to communicate a “0” to Bob and she transmits
the codeword “111” if she wants to send a “1” to him. The physical or channel bits are the actual
bits that she transmits over the noisy channel, and the logical or information bits are those that
she intends for Bob to receive. In our example, “0” is a logical bit and “000” corresponds to the
physical bits.

The rate of this scheme is 1/3 because it encodes one information bit. The term “rate” is perhaps
a misnomer for coding scenarios that do not involve sending bits in a time sequence over a channel.
We may just as well use the majority vote code to store one bit in a memory device that may be
unreliable. Perhaps a more universal term is efficiency.

2.2 Decoding Algorithm

Even with the encoding algorithm which will reduce the error probability, it does not always
transmit these codewords without error. So, Bob has to use a certain algorithm to decode in case
of error. He simply takes a majority vote to determine the transmitted message—he decodes as
“0” if the number of zeros in the codeword he receives is greater than the number of ones.
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We now analyze the performance of this simple “systems engineering” solution. Table 1 enumerates
the probability of receiving every possible sequence of three bits, assuming that Alice transmits a
“0” by encoding it as “000.” The probability of no error is (1− p)3, the probability of a single-bit
error is 3p (1− p)2, the probability of a double-bit error is 3p2 (1− p), and the probability of a
total failure is p3. The majority vote solution can “correct” for no error and it corrects for all
single-bit errors, but it has no ability to correct for double-bit and triple-bit errors. In fact, it
actually incorrectly decodes these latter two scenarios by “correcting” “011”, “110”, or “101” to
“111” and decoding “111” as a “1.” Thus, these latter two outcomes are errors because the code
has no ability to correct them. We can employ similar arguments as above to the case where Alice
transmits a “1” to Bob with the majority vote code.

When does this majority vote scheme perform better than no coding at all? It is exactly when
the probability of error with the majority vote code is less than p, the probability of error with no
coding. Letting e denote the event that an error occurs, the probability of error is equal to the
following quantity:

Pr (e) = Pr (e|0) Pr (0) + Pr (e|1) Pr (1) . (2)

Our analysis above suggests that the conditional probabilities Pr (e|0) and Pr (e|1) are equal for
the majority vote code because of the symmetry in the noisy bit-flip channel. This result implies
that the probability of error is

Pr (e) = 3p2 (1− p) + p3 (3)

= 3p2 − 2p3, (4)

because Pr (0) + Pr (1) = 1. We consider the following inequality to determine if the majority vote
code reduces the probability of error:

3p2 − 2p3 < p. (5)

This inequality simplifies as

0 < 2p3 − 3p2 + p (6)

∴ 0 < p (2p− 1) (p− 1) . (7)

The only values of p that satisfy the above inequality are 0 < p < 1/2. Thus, the majority vote
code reduces the probability of error only when 0 < p < 1/2, i.e., when the noise on the channel is
not too much. Too much noise has the effect of causing the codewords to flip too often, throwing
off Bob’s decoder.

The majority vote code gives a way for Alice and Bob to reduce the probability of error during
their communication, but unfortunately, there is still a non-zero probability for the noisy channel
to disrupt their communication. Is there any way that they can achieve reliable communication by
reducing the probability of error to zero?

One simple approach to achieve this goal is to exploit the majority vote idea a second time. They
can concatenate two instances of the majority vote code to produce a code with a larger number
of physical bits. Concatenation consists of using one code as an “inner” code and another as an
“outer” code. There is no real need for us to distinguish between the inner and outer code in this
case because we use the same code for both the inner and outer code. The concatenation scheme
for our case first encodes the message i, where i ∈ {0, 1}, using the majority vote code. Let us label
the codewords as follows:

0̄ ≡ 000, 1̄ ≡ 111. (8)
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For the second layer of the concatenation, we encode 0̄ and 1̄ with the majority vote code again:

0̄→ 0̄0̄0̄, 1̄→ 1̄1̄1̄. (9)

Thus, the overall encoding of the concatenated scheme is as follows:

0→ 000 000 000, 1→ 111 111 111. (10)

The rate of the concatenated code is 1/9 and smaller than the original rate of 1/3. A simple appli-
cation of the above performance analysis for the majority vote code shows that this concatenation
scheme reduces the probability of error as follows:

3[Pr (e)]2 − 2[Pr (e)]3 = O
(
p4
)
. (11)

The error probability Pr (e) is in (4) and O
(
p4
)

indicates that the leading order term of the left-hand
side is the fourth power in p.

The concatenated scheme achieves a lower probability of error at the cost of using more physical bits
in the code. A first guess for achieving reliable communication is to continue concatenating. We
can continue indefinitely with concatenating to make the probability of error arbitrarily small and
achieve reliable communication, but the problem is that the rate approaches zero as the probability
of error becomes arbitrarily small. In general, for n concatenations, the rate is equal to 1

3n and the
error probability is O(p2n).

3 Shannon’s Channel Coding Theorem

We now consider the case in which Alice wishes to transmit a larger set of messages with asymptot-
ically perfect reliability, rather than merely sending “0” or “1.” Suppose that she selects messages
from a message set [M ] that consists of M messages:

[M ] ≡ {1, . . . ,M} . (12)

Before communication begins, Alice and Bob agree on a code: C ≡ {xn (m)}m∈[M ] where xn (m)
denotes each codeword corresponding to the message m and n is the length of the code. We do not
really care much about the content of the actual message that she is transmitting. We just assume
total ignorance of her message because we only really care about her ability to send any message
reliably. The message set [M ] requires log (M) bits to represent it, where the logarithm is again
base two. This number becomes important when we calculate the rate of a channel code.

Next, we would like to generalize the noisy channel that connects Alice to Bob. We used the bit-flip
channel before, but this channel is not general enough for our purposes. A simple way to extend
the channel model is to represent it as a conditional probability distribution involving an input
random variable X and an output random variable Y :

N : pY |X(y|x). (13)

The last part of the model involves Bob receiving the corrupted codeword yn over the channel
and determining a potential codeword xn with which it should be associated. Figure 2 displays
Shannon’s model of communication that we have described.
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Figure 2: This figure depicts Shannon’s idea for a classical channel code. Alice chooses a message m
from a message set [M ] ≡ {1, . . . ,M}. She encodes the message m with an encoding operation E .
This encoding operation assigns a codeword xn to the message m and inputs the codeword xn to a
large number of i.i.d. uses of a noisy channel N . The noisy channel randomly corrupts the codeword
xn to a sequence yn. Bob receives the corrupted sequence yn and performs a decoding operation
D to estimate the codeword xn. This estimate of the codeword xn then produces an estimate m̂
of the message that Alice transmitted. A reliable code has the property that Bob can decode each
message m ∈ [M ] with a vanishing probability of error when the block length n becomes large.

We use the symbol N to represent this more general channel model. One assumption that we make
about random variables X and Y is that they are discrete, but the respective sizes of their outcome
sets do not have to match. The other assumption that we make concerning the noisy channel is
that it is i.i.d. Let Xn ≡ X1X2 · · ·Xn and Y n ≡ Y1Y2 · · ·Yn be the random variables associated
with respective sequences xn ≡ x1x2 · · ·xn and yn ≡ y1y2 · · · yn. If Alice inputs the sequence xn to
the n inputs of n respective uses of the noisy channel, a possible output sequence may be yn. The
i.i.d. assumption allows us to factor the conditional probability of the output sequence yn:

pY n|Xn (yn|xn) = pY1|X1
(y1|x1) pY2|X2

(y2|x2) · · · pYn|Xn
(yn|xn) (14)

= pY |X (y1|x1) pY |X (y2|x2) · · · pY |X (yn|xn) (15)

=

n∏
i=1

pY |X (yi|xi) . (16)

We calculate the rate of a given coding scheme as follows:

rate ≡ # of message bits

# of channel uses
. (17)

In our model, the rate of a given coding scheme is

R =
1

n
log (M) , (18)

where log (M) is the number of bits needed to represent any message in the message set [M ] and n
is the number of channel uses. The capacity of a noisy channel is the highest rate at which it can
communicate information reliably.
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3.1 Achievable Rate

Here we define an (n,R, ε) channel code for communication. Consider Figure 2 depicting a general
protocol for communication over a classical channel N ≡ pY |X (y|x). Before communication begins,
the sender Alice and receiver Bob have already established a codebook {xn (m)}m∈M, where each
codeword xn (m) corresponds to a message m that Alice might wish to send to Bob. If Alice wishes
to send message m, she inputs the codeword xn (m) to the i.i.d. channel N n ≡ pY n|Xn (yn|xn).
More formally, her map is some encoding En : M→ X n. She then exploits n uses of the channel
to send xn (m). Bob receives some sequence yn from the output of the channel, and he performs a
decoding Dn : Yn →M in order to recover the message m that Alice transmits. The rate R of the
code is equal to log2 |M| /n, measured in bits per channel use. The probability of error pe for an
(n,R, ε) channel code is bounded from above as

pe ≡ max
m

Pr {Dn (N n (En (m))) 6= m} ≤ ε. (19)

A communication rate R is achievable if there exists an (n,R− δ, ε) channel code for all ε, δ > 0
and sufficiently large n. The channel capacity C(N ) of N is the supremum of all achievable rates.
We can now state Shannon’s channel capacity theorem:

Theorem 1 (Shannon Channel Capacity). The maximum mutual information I (N ) is equal to
the capacity C(N ) of a channel N ≡ pY |X(y|x):

C(N ) = I (N ) ≡ max
pX(x)

I(X;Y ), (20)

where I(X;Y ) = H(X)+H(Y )−H(XY ) is the mutual information of random variables X and Y .

4 Rough Sketch of the Achievability Proof

Alice chooses every symbol of every codeword independently at random according to random vari-
able X with probability distribution pX(x). By the asymptotic equipartition theorem, it is highly
likely that each of the codewords that Alice chooses is a typical sequence with sample entropy
close to H(X). In the coding scheme, Alice transmits a particular codeword xn over the noisy
channel and Bob receives a random sequence Y n. The random sequence Y n is a random variable
that depends on xn through the conditional probability distribution pY |X(y|x). We would like a
way to determine the number of possible output sequences that are likely to correspond to a par-
ticular input sequence xn. A useful entropic quantity for this situation is the conditional entropy
H(Y |X) = H(XY )−H(X).

For now, just think of this conditional entropy as measuring the uncertainty of a random variable
Y when one already knows the value of the random variable X. The conditional entropy H(Y |X)
is always less than the entropy H(Y ) unless X and Y are independent. This inequality holds
because knowledge of a correlated random variable X does not increase the uncertainty about Y .
It turns out that there is a notion of conditional typicality (depicted in Figure 3), similar to the
notion of typicality, and a similar asymptotic equipartition theorem holds for conditionally typical
sequences. This theorem also has three important properties. For each input sequence xn, there is
a corresponding conditionally typical set with the following properties:
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Figure 3: This figure depicts the notion of a conditionally typical set. Associated to every input
sequence xn is a conditionally typical set consisting of the likely output sequences. The size of
this conditionally typical set is ≈ 2nH(Y |X). It is exponentially smaller than the set of all output
sequences whenever the conditional random variable is not uniform.

1. It has almost all of the probability—it is highly likely that a random channel output sequence
is conditionally typical given a particular input sequence.

2. Its size is ≈ 2nH(Y |X).

3. The probability of each conditionally typical sequence yn, given knowledge of the input se-
quence xn, is ≈ 2−nH(Y |X).

If we disregard knowledge of the input sequence used to generate an output sequence, the probability
distribution that generates the output sequences is

pY (y) =
∑
x

pY |X(y|x)pX(x). (21)

We can think that this probability distribution is the one that generates all the possible output
sequences. The likely output sequences are in an output typical set of size 2nH(Y ).

We are now in a position to describe the structure of a random code and the size of the message
set. Alice generates 2nR codewords according to the distribution pX(x) and suppose for now that
Bob has knowledge of the code after Alice generates it. Suppose Alice sends one of the codewords
over the channel. Bob is ignorant of the transmitted codeword, so from his point of view, the
output sequences are generated according to the distribution pY (y). Bob then employs typical
sequence decoding. He first determines if the output sequence yn is in the typical output set of size
2nH(Y ). If not, he declares an error. The probability of this type of error is small by the asymptotic
equipartition theorem. If the output sequence yn is in the output typical set, he uses his knowledge
of the code to determine a conditionally typical set of size 2nH(Y |X) to which the output sequence
belongs. If he decodes an output sequence yn to the wrong conditionally typical set, then an error
occurs. This last type of error suggests how they might structure the code in order to prevent this
type of error from happening. If they structure the code so that the output conditionally typical
sets do not overlap too much, then Bob should be able to decode each output sequence yn to a
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Figure 4: This figure depicts the packing argument that Shannon used. The channel induces a
conditionally typical set corresponding to each codeword xn (i) where i ∈ {1, . . . ,M}. The size of
each conditionally typical output set is 2nH(Y |X). The size of the typical set of all output sequences
is 2nH(Y ). These sizes suggest that we can divide the output typical set into M conditionally typical
sets and be able to distinguish M ≈ 2nH(Y )/2nH(Y |X) messages without error.

unique input sequence xn with high probability. This line of reasoning suggests that they should
divide the set of output typical sequences into M sets of conditionally typical output sets, each of
size 2nH(Y |X). Thus, if they set the number of messages M = 2nR as follows:

2nR ≈ 2nH(Y )

2nH(Y |X)
= 2n(H(Y )−H(Y |X)), (22)

then our intuition is that Bob should be able to decode correctly with high probability. Such an
argument is a “packing” argument because it shows how to pack information into the space of all
output sequences. Figure 4 gives a visual depiction of the packing argument. It turns out that this
intuition is correct—Alice can reliably send information to Bob if the quantity H(Y )−H(Y |X) =
I(X;Y ) bounds the rate R:

R < H(Y )−H(Y |X) = I(X;Y ). (23)

A rate less thanH(Y )−H(Y |X) ensures that we can make the expectation of the average probability
of error as small as we would like. We then employ a derandomization argument, in order to
establish that there exists a code whose average probability of error vanishes as the number n of
channel uses tends to infinity.
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