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Main message

@ Question: What are the net rates at which a sender and receiver can
generate classical communication, quantum communication, and
entanglement by using a channel many times?

@ Many special cases are known, such as the classical capacity theorem
[Hol98, SWI7], quantum capacity theorem
[Sch96, SN96, BNS98, BKNOQO, LI097, Sho02, Dev05], and the
entanglement-assisted classical capacity theorem [BSSTO02]

@ A priori, this question might seem challenging, but there is a
surprisingly simple answer for several channels of interest:
Just combine a single protocol with teleportation, super-dense coding,
and entanglement distribution
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Background — resources

Resources [Ben04, DHW04, DHW08|

@ Let [c — ¢] denote a noiseless classical bit channel from Alice
(sender) to Bob (receiver), which performs the following mapping on
a qubit density operator

o= [Poo 901] N [Poo 0 ]
P10 P11 0 pn
o Let [q — g] denote a noiseless quantum bit channel from Alice to
Bob, which perfectly preserves a qubit density operator.

@ Let [gq] denote a noiseless ebit shared between Alice and Bob, which
is a maximally entangled state |[®T)ag = (|00)ag + |11>AB)/\@.

@ Entanglement distribution, super-dense coding, and teleportation are
non-trivial protocols for combining these resources
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Entanglement distribution

idA’—>B

@ Alice performs local operations (the Hadamard and CNOT) and
consumes one use of a noiseless qubit channel to generate one
noiseless ebit |®T) oz shared with Bob.

@ Resource inequality: [g — ¢q] > [qq]
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Super-dense coding [BW92]

Conditional Operations

Qubit

/ Channel
f’« p— >

Bell Measurement

@ Alice and Bob share an ebit. Alice would like to transmit two classical
bits x; x> to Bob. She performs a Pauli rotation conditioned on x;x»
and sends her share of the ebit over a noiseless qubit channel. Bob
then performs a Bell measurement to get xixo.

@ Resource inequality: [g — q] + [qq] > 2[c — (]
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Teleportation [BBC*93]

Bell Measurement Two Classical

Channels

Conditional Operations

@ Alice would like to transmit an arbitrary quantum state |¢)) 4 to Bob.
Alice and Bob share an ebit before the protocol begins. Alice can
“teleport” her quantum state to Bob by consuming the entanglement
and two uses of a noiseless classical bit channel.

@ Resource inequality: 2[c — c] + [qq] > [q — 4]
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Combining protocols [HW10]

@ Think of each protocol as a rate triple (C, Q, E)
e Entanglement distribution is (0, —1,1)

@ Super-dense coding is (2, -1, —1)

e Teleportation is (—2,1, —1)

@ All achievable rate triples are then given by
{(C,Q,E)=a(-2,1,-1)+ p(2,-1,-1) +v(0,-1,1) : o, B,y > O}

o Writing as a matrix equation, inverting, and applying constraints
a, 3,7 > 0 gives the following achievable rate region:

C+Q+E<DO,
Q+E<O,
C+2Q<0.
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Unit resource capacity region [HW10]

The unit resource capacity regionis C+ Q+ E <0, @+ E <0,
C +2Q <0 and is provably optimal.
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Trading resources using a quantum channel

@ Main question: What net rates of classical communication, quantum
communication, and entanglement generation can we achieve by
using a quantum channel A many times?

e That is, what are the rates Cout, Qout, Eout, Gin, Qin, Ein > 0
achievable in the following resource inequality?

(N) + Gnlc = c] + Qinlg — q] + Ein[qq]
> Gout[c — c] + Qout[qg — q] + Eout[qq]

@ The union of all achievable rate triples
(Cout — Giny Qout — Qin, Eout — Ein) is called the quantum dynamic
capacity region.
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Trading resources using a quantum channel

Reference

Figure: The most general protocol for generating classical communication,
quantum communication, and entanglement with the help of the same respective
resources and many uses of a quantum channel.
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Background — entropies

The optimal rates are expressed in terms of entropies, which we
review briefly

Given a density operator o, the quantum entropy is defined as
H(c) = —Tr{ologo}.

Given a bipartite density operator pag, the quantum mutual
information is defined as

I(A;B), = H(A), + H(B), — H(AB),
The coherent information /(A)B), is defined as
I(A)B), = H(B), — H(AB),

Given a tripartite density operator pagc, the conditional mutual
information is defined as

I(A; B|C), = H(AC), + H(BC), — H(C), — H(ABC),
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Quantum dynamic capacity theorem (setup) [WH12]

Define the state-dependent region Cél(gE »() as the set of all rates
C, Q, and E, such that

C +2Q < I(AX; B),,
Q + E < I(A)BX),,
C+ Q+E < I(X;B)y+ I(A)BX),.

The above entropic quantities are with respect to a classical-quantum
state oxag, where

oxAB = ZPX )1x) (x|x @ Na—s(dan),

and the states ¢ ,, are pure.
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Quantum dynamic capacity theorem (statement) [WH12]

Define C&gE(N’) as the union of the state-dependent regions
1
Céae.o (V)
1 1
Ceae) = e,V

Then the quantum dynamic capacity region Ccqe(N) of a channel N
is equal to the following expression:

Ccqe(NV U C&%E N®K),

where the overbar indicates the closure of a set.

It is implicit that one should consider states on A’¥ instead of A’
when taking the regularization.

Mark M. Wilde (LSU) 13 / 41



Example: Qubit dephasing channel

@ Take the channel to be the qubit dephasing channel
N(p) = (1 — p)p+ pZpZ with dephasing parameter p = 0.2.
@ Take the input state as

1
oxan = 5(10)(0[x @ daa + 1) (1x @ dan),
where

|6%) apr = V/1/4]00) an + v/3/4]11) an,
‘¢1>AA’ = M|OO>AA’ + \/mul)AA/.

@ The state oxapg resulting from the channel is N _.g(oxan)
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Example: Qubit dephasing channel (ctd.)
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Figure: An example of the state-dependent achievable region C&;EU(/\/)
corresponding to a state oxage that arises from a qubit dephasing channel with
dephasing parameter p = 0.2. The figure depicts the octant corresponding to the
consumption of entanglement and the generation of classical and quantum
communication.
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Direct part of the quantum dynamic capacity theorem

Entanglement-assisted classical and quantum communication

@ There is a protocol that implements the following resource inequality:
1 1
W) + S1(A; EIX), [9q] = S1(A; BIX), [g — ] +1(X; B), [c = c]
where pxage is a state of the following form:

PXABE = Z px (x)1x) (x|x @ UN_, ge(@ha);

X
the states ¢ 5 are pure, and U , 5 is an isometric extension of the
channel N _,5.

@ Combine this with the unit protocols of teleportation, super-dense
coding, and entanglement distribution
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Direct part of the quantum dynamic capacity theorem

@ Combining the protocols gives the following set of achievable rates:

C 0 2 =2| |« 1(X; B)s
Q| =|-1 -1 1|8+ 3/(ABIX) |,
E 1 -1 1] |y —2I(A EX)o

where «, 5, v > 0.
@ Inverting the matrix equation, applying the constraints «, 3, v > 0,
and using entropy identities gives the following region:

C+2Q< /(AX; B)m
Q + E < I(A)BX),,
C+ Q+E < I(X; B)y + I(A)BX),,

which establishes the achievability part.
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Direct part of the quantum dynamic capacity theorem

How to achieve the following resource inequality?

Ny + %/(A; EX)plaq] = %/(A; BIX)pla — a] + 1(X; B),[c — ]

Tools for achievability part [Will5, Chapter 25]
@ HSW classical capacity theorem [Hol98, SW97]

e Entanglement-assisted classical capacity theorem [BSSTO02] (see also
[HDWO08])

@ Modification of a classical trick called “superposition coding” [Sho04]

@ Another trick called coherent communication [Har04, DHW08]
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HSW theorem (constant-composition variant)

Fix an ensemble {px(x), p%} and set o = Na_,g(p%).
Now select a typical type class T;, which is a set of all the sequences
x™ with

@ the same empirical distribution t(x)

@ t(x) deviates from the distribution px(x) by no more than ¢ > 0

All the sequences in the same type class are related to one another by
a permutation, and all of them are strongly typical

Select a code at random by picking all of the codewords
independently and uniformly at random from the typical type class

We can then conclude the existence of a codebook {x"(m)}mer and
a decoding POVM {AZ,} me s such that M ~ 2M(XiB) and

T {Ag e (™)} 212 ¥me M
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Entanglement-assisted coding (simple version)

@ Allow Alice and Bob to share a maximally entangled state |®) 5

@ They then induce the following ensemble by Alice applying a
Heisenberg—Weyl operator uniformly at random:

{d72, (Nasser @idp) (P43)} -

where |®*%) s = X(x)a Z(2)a |®) z5- (This is the same ensemble
from super-dense coding if N is the identity channel.)

@ By the HSW theorem and some entropy manipulations, we can
conclude that the mutual information /(B’; B)xr(e) is an achievable
rate.
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Entanglement-assisted coding (general version)

@ Allow Alice and Bob to share many copies of a pure bipartite state

©)as = Vpx(X)x)alx)s
X
@ Much degeneracy in many copies of this state—can rewrite it as

AB —Z\/pxn X” ‘X An‘X Bn = Z\/ |¢ AnBn

where |®;) angn is maximally entangled on a type class subspace t.

@ Take encoding unitary to have the form
U(s) = @ (=P V(x, z¢)
t

where V/(x¢, z¢) is a Heisenberg—Weyl operator for a type class
subspace t and s = ((x¢, z¢, bt)¢).
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Entanglement-assisted coding (general version)

e Random coding: pick encoding unitaries U(s) uniformly at random

@ The entanglement-assisted quantum codewords
| om) angn = (Uan(s(m)) @ Ign) |0) 45
have the following interesting property:
[em)angr = (Ian © U (s(m)) ) )53,

which allows us to conclude that the reduced state on the channel
input is the same for all codewords:

Trgn {|om) (Pmlangn} = ©%"

(privacy without access to Bob's share of the entanglement)

o Can achieve the mutual information rate /(B’; B) nr(,)
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“Superposition coding” [Sho04]

@ “Layer” an HSW code “on top of” several EA codes:

1) C_:_
2 C U,
) C

lo2) C_T_
oy |
l9s) C
l9s) C

m

Moyt
VAN

@ This achieves the following resource inequality:

=}z

N) + H(AIX), [qq] = 1(A; BIX), [c = c] + 1(X; B),[c = c]

where pxag = >, px(X)[x)(x|x @ Na(¢ha)-
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Upgrading with coherent communication [Har04, DHWO08]

@ It is possible to “upgrade” the classical bits transmitted by the
entanglement-assisted codes to “coherent bits", because they are
private from the environment of the channel [DHWO08]

@ We can then use a trick called the coherent communication identity
[Har04] to conclude that the desired resource inequality is achievable:

() + 1A EIX), [qa] > 514 BIX),la = 6] + 1(X; B), [c = d
where pxage = ), px(x)[x)(x|x ®UALBE(90§\A')'
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Converse part

@ Consider the most general protocol:

Reference

R

Alice

Bob

@ Make use of quantum data processing and dimension bounds for
information quantities
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Computing the boundary of the region [WH12]

o Let W = (wc, wo, we) € R3 be a weight vector, R = (C, Q, E) a rate
vector, and £ = {px(x), ¢4 } an ensemble.

@ Can phrase the task of computing the boundary of the single-copy
capacity region as an optimization problem:

P*(w)

supw - R
R,E

< I( X;B)Ua

< I(A)BX),,

< I(X; B)y + 1(A)BX),,

subject to C+ 2Q

+ E
C+Q+E

where the optimization is with respect to all rate vectors R and
ensembles &£, with oxap a state of the previously given form.

Mark M. Wilde (LSU) 26 / 41



Quantum dynamic capacity formula [WH12]

@ By linear programming duality, if P*(w) < oo, then the optimization
problem is equivalent to computing the quantum dynamic capacity
formula, defined as

Dy(N) = max M /(AX: B)o+Xal (A)BX)s+23 [1(X: B)y + 1(A)BX),]

where oxapg is a state of the previously given form and
A = (A1, A2, A3) is a vector of Lagrange multipliers such that
>\17 )‘2a >\3 Z 0.

@ Suppose for a given channel N that Dy(N®") = nDy(N) Vn>1

and X = 0. Then the computation of the boundary simplifies
significantly. This happens for a number of important channels.
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Example: Quantum erasure channel

@ Erasure channel is defined as follows:
Ne(p) = (1 =€) p+ele)(el,

where p is a d-dimensional input state, |e) is an erasure flag state
orthogonal to all inputs (so that the output space has dimension
d+1), and € € [0, 1] is the erasure probability.

o Let V¢ be a quantum erasure channel with € € [0,1/2]. Then the
quantum dynamic capacity region Coqr(N°) is equal to the union of
the following regions, obtained by varying A € [0, 1]:

C+2Q<(1—¢)(1+4 \)logd,
Q+E<(1-2)Alogd,
C+Q+E<(l—ec—e))logd.
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Example: Quantum erasure channel

Entanglement consumption rate

0

1.5 25 2

Quantum communication rate Classical communication rate

Figure: The quantum dynamic capacity region for the (qubit) quantum erasure
channel with ¢ = 1/4. The plot demonstrates that time-sharing is optimal.
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Example: Qubit dephasing channel

The dynamic capacity region Ccqe(Ap) of a dephasing channel with
dephasing parameter p € [0, 1] is the set of all C, Q, and E such that

C+2Q <1+ h(v) — ha(v(v, p)),
Q+ E < hy(v) — ha(v(v, p)),
C+ Q+ E <1— hy(vy(v,p)),

where v € [0,1/2], hy is the binary entropy function, and

’y(z/,p)z;+;\/1—16‘§<1—§)V(1—1/).
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Example: Qubit dephasing channel

0.5

Entanglement consumption rate

-05+

=1
-1
0 -2
-1
1 1 0

Quantum communication rate 2 3 Classical communication rate

Figure: A plot of the dynamic capacity region for a qubit dephasing channel with
dephasing parameter p = 0.2. Slight improvement over time-sharing.

Mark M. Wilde (LSU) 31/41



Example: Pure-loss bosonic channel

@ Pure-loss channel is defined from the following input-output relation:

i —» b=yma+/1-1e
& - &=—1-na+né

where § is the input annihilation operator for the sender, € is the
input annihilation operator for the environment, and 1 € [0, 1] is the
transmissivity of the channel.

@ Place a photon number constraint on the input mode to the channel,
such that the mean number of photons at the input cannot be greater
than Ns € [0, c0).
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Example: Pure-loss bosonic channel [WHG12]

Build trade-off codes from an ensemble of the following form:

{Pa—nns(@), Dar(a)lTms(N)) aar}
where o € C,
1 2
= - expl- 1-A)N
Pu-wws(@) = e o { — Il /10— ) sl
A € [0,1] is a photon-number-sharing parameter, Da () is a
“displacement” unitary operator acting on system A’, and |[¢1ms(N\))aa is

a “two-mode squeezed” (TMS) state:

[PTMms(A)) aar = Z [)\,\E)\NS] rimalma
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Example: Pure-loss bosonic channel [WHG12]

The quantum dynamic capacity region for a pure-loss bosonic channel with
transmissivity 7 > 1/2 is the union of regions of the form:

C+2Q < g(ANs) + g(nNs) — g((1 —n) ANs),
Q+ E < g(nANs) — g((1 —n) ANs),
C+ Q+ E < g(nNs) — g((1—mn) ANs),

where X € [0, 1] is a photon-number-sharing parameter and g(N) is the
entropy of a thermal state with mean photon number N. (This holds
provided that an unsolved minimum-output entropy conjecture is true.)
The region is still achievable if n < 1/2.
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Example: Pure-loss bosonic channel [WHG12]

1.6 —— .
’&7 . 8 | | e Trade-off coding|. . . .
S g == = Time-sharing
< 1.2 G 3
E 0.8 g 4
5 2
504 ol
57" Ng =200 s 2
0 0
0 2 4 6 8 9 10 11
C (cbits / channel use) C (cbits / channel use)
(a) (b)

Figure: Suppose channel transmits on average 3/4 of the photons to the receiver,
while losing the other 1/4 en route. Take mean photon budget of about

200 photons per channel use at the transmitter. (a) classical-quantum trade-off,
(b) classical comm. with rate-limited entanglement consumption. Big gains over
time-sharing.
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Conclusion

@ The quantum dynamic capacity theorem characterizes the net rates at
which a sender and a receiver can generate classical communication,
quantum communication, and entanglement by using a quantum
channel many times

@ The region simplifies for several channels of interest

Open questions

@ Is there a simple characterization for distillation tasks? For progress,
see [HW10]

@ Can we sharpen the theorem? Strong converse bounds, error
exponents, finite-length, second-order, etc.

@ What about channel simulation tasks? (see, e.g., [BDH"14])
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