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Main message

Question: What are the net rates at which a sender and receiver can
generate classical communication, quantum communication, and
entanglement by using a channel many times?

Many special cases are known, such as the classical capacity theorem
[Hol98, SW97], quantum capacity theorem
[Sch96, SN96, BNS98, BKN00, Llo97, Sho02, Dev05], and the
entanglement-assisted classical capacity theorem [BSST02]

A priori, this question might seem challenging, but there is a
surprisingly simple answer for several channels of interest:

Just combine a single protocol with teleportation, super-dense coding,
and entanglement distribution
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Background — resources

Resources [Ben04, DHW04, DHW08]

Let [c → c] denote a noiseless classical bit channel from Alice
(sender) to Bob (receiver), which performs the following mapping on
a qubit density operator

ρ =

[
ρ00 ρ01

ρ10 ρ11

]
→
[
ρ00 0
0 ρ11

]
Let [q → q] denote a noiseless quantum bit channel from Alice to
Bob, which perfectly preserves a qubit density operator.

Let [qq] denote a noiseless ebit shared between Alice and Bob, which
is a maximally entangled state |Φ+〉AB = (|00〉AB + |11〉AB)/

√
2.

Entanglement distribution, super-dense coding, and teleportation are
non-trivial protocols for combining these resources
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Entanglement distribution
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Alice performs local operations (the Hadamard and CNOT) and
consumes one use of a noiseless qubit channel to generate one
noiseless ebit |Φ+〉AB shared with Bob.

Resource inequality: [q → q] ≥ [qq]
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Super-dense coding [BW92]
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Alice and Bob share an ebit. Alice would like to transmit two classical
bits x1x2 to Bob. She performs a Pauli rotation conditioned on x1x2

and sends her share of the ebit over a noiseless qubit channel. Bob
then performs a Bell measurement to get x1x2.

Resource inequality: [q → q] + [qq] ≥ 2[c → c]
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Teleportation [BBC+93]
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Alice would like to transmit an arbitrary quantum state |ψ〉A′ to Bob.
Alice and Bob share an ebit before the protocol begins. Alice can
“teleport” her quantum state to Bob by consuming the entanglement
and two uses of a noiseless classical bit channel.

Resource inequality: 2[c → c] + [qq] ≥ [q → q]
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Combining protocols [HW10]

Think of each protocol as a rate triple (C ,Q,E )

Entanglement distribution is (0,−1, 1)

Super-dense coding is (2,−1,−1)

Teleportation is (−2, 1,−1)

All achievable rate triples are then given by

{(C ,Q,E ) = α(−2, 1,−1) + β(2,−1,−1) + γ(0,−1, 1) : α, β, γ ≥ 0}

Writing as a matrix equation, inverting, and applying constraints
α, β, γ ≥ 0 gives the following achievable rate region:

C + Q + E ≤ 0,

Q + E ≤ 0,

C + 2Q ≤ 0.
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Unit resource capacity region [HW10]
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The unit resource capacity region is C + Q + E ≤ 0, Q + E ≤ 0,
C + 2Q ≤ 0 and is provably optimal.
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Trading resources using a quantum channel

Main question: What net rates of classical communication, quantum
communication, and entanglement generation can we achieve by
using a quantum channel N many times?

That is, what are the rates Cout, Qout, Eout, Cin, Qin, Ein ≥ 0
achievable in the following resource inequality?

〈N〉+ Cin[c → c] + Qin[q → q] + Ein[qq]

≥ Cout[c → c] + Qout[q → q] + Eout[qq]

The union of all achievable rate triples
(Cout − Cin,Qout − Qin,Eout − Ein) is called the quantum dynamic
capacity region.

Mark M. Wilde (LSU) 9 / 41



Trading resources using a quantum channel
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Figure: The most general protocol for generating classical communication,
quantum communication, and entanglement with the help of the same respective
resources and many uses of a quantum channel.
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Background — entropies

The optimal rates are expressed in terms of entropies, which we
review briefly

Given a density operator σ, the quantum entropy is defined as
H(σ) = −Tr{σ log σ}.
Given a bipartite density operator ρAB , the quantum mutual
information is defined as

I (A;B)ρ = H(A)ρ + H(B)ρ − H(AB)ρ

The coherent information I (A〉B)ρ is defined as

I (A〉B)ρ = H(B)ρ − H(AB)ρ

Given a tripartite density operator ρABC , the conditional mutual
information is defined as

I (A;B|C )ρ = H(AC )ρ + H(BC )ρ − H(C )ρ − H(ABC )ρ
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Quantum dynamic capacity theorem (setup) [WH12]

Define the state-dependent region C(1)
CQE,σ(N ) as the set of all rates

C , Q, and E , such that

C + 2Q ≤ I (AX ;B)σ,

Q + E ≤ I (A〉BX )σ,

C + Q + E ≤ I (X ;B)σ + I (A〉BX )σ.

The above entropic quantities are with respect to a classical–quantum
state σXAB , where

σXAB ≡
∑
x

pX (x)|x〉〈x |X ⊗NA′→B(φxAA′),

and the states φxAA′ are pure.
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Quantum dynamic capacity theorem (statement) [WH12]

Define C(1)
CQE(N ) as the union of the state-dependent regions

C(1)
CQE,σ(N ):

C(1)
CQE(N ) ≡

⋃
σ

C(1)
CQE,σ(N ).

Then the quantum dynamic capacity region CCQE(N ) of a channel N
is equal to the following expression:

CCQE(N ) =
∞⋃
k=1

1

k
C(1)

CQE(N⊗k),

where the overbar indicates the closure of a set.

It is implicit that one should consider states on A′k instead of A′

when taking the regularization.
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Example: Qubit dephasing channel

Take the channel to be the qubit dephasing channel
N (ρ) = (1− p)ρ+ pZρZ with dephasing parameter p = 0.2.

Take the input state as

σXAA′ ≡ 1

2
(|0〉〈0|X ⊗ φ0

AA′ + |1〉〈1|X ⊗ φ1
AA′),

where ∣∣φ0
〉
AA′ ≡

√
1/4|00〉AA′ +

√
3/4|11〉AA′ ,∣∣φ1

〉
AA′ ≡

√
3/4|00〉AA′ +

√
1/4|11〉AA′ .

The state σXAB resulting from the channel is NA′→B(σXAA′)
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Example: Qubit dephasing channel (ctd.)
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Figure: An example of the state-dependent achievable region C(1)
CQE σ(N )

corresponding to a state σXABE that arises from a qubit dephasing channel with
dephasing parameter p = 0.2. The figure depicts the octant corresponding to the
consumption of entanglement and the generation of classical and quantum
communication.
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Direct part of the quantum dynamic capacity theorem

Entanglement-assisted classical and quantum communication

There is a protocol that implements the following resource inequality:

〈N〉+
1

2
I (A;E |X )ρ [qq] ≥ 1

2
I (A;B|X )ρ [q → q] + I (X ;B)ρ [c → c]

where ρXABE is a state of the following form:

ρXABE ≡
∑
x

pX (x)|x〉〈x |X ⊗ UNA′→BE (ϕx
AA′),

the states ϕx
AA′ are pure, and UNA′→BE is an isometric extension of the

channel NA′→B .

Combine this with the unit protocols of teleportation, super-dense
coding, and entanglement distribution
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Direct part of the quantum dynamic capacity theorem

Combining the protocols gives the following set of achievable rates:CQ
E

 =

 0 2 −2
−1 −1 1
1 −1 −1

αβ
γ

+

 I (X ;B)σ
1
2 I (A;B|X )σ
−1

2 I (A;E |X )σ

 ,
where α, β, γ ≥ 0.

Inverting the matrix equation, applying the constraints α, β, γ ≥ 0,
and using entropy identities gives the following region:

C + 2Q ≤ I (AX ;B)σ,

Q + E ≤ I (A〉BX )σ,

C + Q + E ≤ I (X ;B)σ + I (A〉BX )σ,

which establishes the achievability part.
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Direct part of the quantum dynamic capacity theorem

How to achieve the following resource inequality?

〈N〉+
1

2
I (A;E |X )ρ [qq] ≥ 1

2
I (A;B|X )ρ [q → q] + I (X ;B)ρ [c → c]

Tools for achievability part [Wil15, Chapter 25]

HSW classical capacity theorem [Hol98, SW97]

Entanglement-assisted classical capacity theorem [BSST02] (see also
[HDW08])

Modification of a classical trick called “superposition coding” [Sho04]

Another trick called coherent communication [Har04, DHW08]
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HSW theorem (constant-composition variant)

Fix an ensemble {pX (x), ρxA} and set σxB ≡ NA→B(ρxA).

Now select a typical type class Tt , which is a set of all the sequences
xn with

1 the same empirical distribution t(x)
2 t(x) deviates from the distribution pX (x) by no more than δ > 0

All the sequences in the same type class are related to one another by
a permutation, and all of them are strongly typical

Select a code at random by picking all of the codewords
independently and uniformly at random from the typical type class

We can then conclude the existence of a codebook {xn(m)}m∈M and
a decoding POVM {Λm

Bn}m∈M such that M≈ 2nI (X ;B) and

Tr
{

Λm
BnN⊗n

(
ρ
xn(m)
An

)}
≥ 1− ε ∀m ∈M
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Entanglement-assisted coding (simple version)

Allow Alice and Bob to share a maximally entangled state |Φ〉AB

They then induce the following ensemble by Alice applying a
Heisenberg–Weyl operator uniformly at random:{

d−2, (NA→B′ ⊗ idB) (Φx ,z
AB)
}
.

where |Φx ,z〉AB = X (x)A Z (z)A |Φ〉AB . (This is the same ensemble
from super-dense coding if N is the identity channel.)

By the HSW theorem and some entropy manipulations, we can
conclude that the mutual information I (B ′;B)N (Φ) is an achievable
rate.
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Entanglement-assisted coding (general version)

Allow Alice and Bob to share many copies of a pure bipartite state

|ϕ〉AB ≡
∑
x

√
pX (x)|x〉A|x〉B .

Much degeneracy in many copies of this state—can rewrite it as

|ϕ〉⊗nAB =
∑
xn

√
pX n(xn)|xn〉An |xn〉Bn =

∑
t

√
p(t)|Φt〉AnBn

where |Φt〉AnBn is maximally entangled on a type class subspace t.

Take encoding unitary to have the form

U(s) ≡
⊕
t

(−1)bt V (xt , zt)

where V (xt , zt) is a Heisenberg–Weyl operator for a type class
subspace t and s = ((xt , zt , bt)t).

Mark M. Wilde (LSU) 21 / 41



Entanglement-assisted coding (general version)

Random coding: pick encoding unitaries U(s) uniformly at random

The entanglement-assisted quantum codewords

|ϕm〉AnBn = (UAn(s(m))⊗ IBn) |ϕ〉⊗nAB

have the following interesting property:

|ϕm〉AnBn =
(
IAn ⊗ UT

Bn(s(m))
)
|ϕ〉⊗nAB ,

which allows us to conclude that the reduced state on the channel
input is the same for all codewords:

TrBn {|ϕm〉〈ϕm|AnBn} = ϕ⊗nA

(privacy without access to Bob’s share of the entanglement)

Can achieve the mutual information rate I (B ′;B)N (ϕ)
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“Superposition coding” [Sho04]

“Layer” an HSW code “on top of” several EA codes:

l3

l2

Ul1

l1

Ul2

l2

Ul3

l3

|φ1〉

|φ1〉

|φ1〉

|φ2〉

|φ2〉

|φ3〉

|φ3〉

N

N

N

N

N

N

N

m m

l1

This achieves the following resource inequality:

〈N〉+ H(A|X )ρ [qq] ≥ I (A;B|X )ρ [c → c] + I (X ;B)ρ [c → c]

where ρXAB ≡
∑

x pX (x)|x〉〈x |X ⊗NA′→B(ϕx
AA′).
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Upgrading with coherent communication [Har04, DHW08]

It is possible to “upgrade” the classical bits transmitted by the
entanglement-assisted codes to “coherent bits”, because they are
private from the environment of the channel [DHW08]

We can then use a trick called the coherent communication identity
[Har04] to conclude that the desired resource inequality is achievable:

〈N〉+
1

2
I (A;E |X )ρ [qq] ≥ 1

2
I (A;B|X )ρ [q → q] + I (X ;B)ρ [c → c]

where ρXABE ≡
∑

x pX (x)|x〉〈x |X ⊗ UNA′→BE (ϕx
AA′).
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Converse part

Consider the most general protocol:
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Make use of quantum data processing and dimension bounds for
information quantities
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Computing the boundary of the region [WH12]

Let ~w ≡ (wC ,wQ ,wE ) ∈ R3 be a weight vector, ~R ≡ (C ,Q,E ) a rate
vector, and E ≡ {pX (x), φxAA′} an ensemble.

Can phrase the task of computing the boundary of the single-copy
capacity region as an optimization problem:

P∗(~w) ≡ sup
~R,E

~w · ~R

subject to C + 2Q ≤ I (AX ;B)σ,

Q + E ≤ I (A〉BX )σ,

C + Q + E ≤ I (X ;B)σ + I (A〉BX )σ,

where the optimization is with respect to all rate vectors ~R and
ensembles E , with σXAB a state of the previously given form.
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Quantum dynamic capacity formula [WH12]

By linear programming duality, if P∗(~w) <∞, then the optimization
problem is equivalent to computing the quantum dynamic capacity
formula, defined as

D~λ(N ) ≡ max
σ
λ1I (AX ;B)σ+λ2I (A〉BX )σ+λ3 [I (X ;B)σ + I (A〉BX )σ] ,

where σXAB is a state of the previously given form and
~λ ≡ (λ1, λ2, λ3) is a vector of Lagrange multipliers such that
λ1, λ2, λ3 ≥ 0.

Suppose for a given channel N that D~λ(N⊗n) = nD~λ(N ) ∀n ≥ 1

and ~λ � 0. Then the computation of the boundary simplifies
significantly. This happens for a number of important channels.
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Example: Quantum erasure channel

Erasure channel is defined as follows:

N ε(ρ) = (1− ε) ρ+ ε|e〉〈e|,

where ρ is a d-dimensional input state, |e〉 is an erasure flag state
orthogonal to all inputs (so that the output space has dimension
d + 1), and ε ∈ [0, 1] is the erasure probability.

Let N ε be a quantum erasure channel with ε ∈ [0, 1/2]. Then the
quantum dynamic capacity region CCQE(N ε) is equal to the union of
the following regions, obtained by varying λ ∈ [0, 1]:

C + 2Q ≤ (1− ε) (1 + λ) log d ,

Q + E ≤ (1− 2ε)λ log d ,

C + Q + E ≤ (1− ε− ελ) log d .
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Example: Quantum erasure channel
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Figure: The quantum dynamic capacity region for the (qubit) quantum erasure
channel with ε = 1/4. The plot demonstrates that time-sharing is optimal.
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Example: Qubit dephasing channel

The dynamic capacity region CCQE(∆p) of a dephasing channel with
dephasing parameter p ∈ [0, 1] is the set of all C , Q, and E such that

C + 2Q ≤ 1 + h2(ν)− h2(γ(ν, p)),

Q + E ≤ h2(ν)− h2(γ(ν, p)),

C + Q + E ≤ 1− h2(γ(ν, p)),

where ν ∈ [0, 1/2], h2 is the binary entropy function, and

γ(ν, p) ≡ 1

2
+

1

2

√
1− 16 · p

2

(
1− p

2

)
ν(1− ν).
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Example: Qubit dephasing channel
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Figure: A plot of the dynamic capacity region for a qubit dephasing channel with
dephasing parameter p = 0.2. Slight improvement over time-sharing.
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Example: Pure-loss bosonic channel

Pure-loss channel is defined from the following input-output relation:

â → b̂ =
√
η â +

√
1− η ê,

ê → ê ′ = −
√

1− η â +
√
η ê,

where â is the input annihilation operator for the sender, ê is the
input annihilation operator for the environment, and η ∈ [0, 1] is the
transmissivity of the channel.

Place a photon number constraint on the input mode to the channel,
such that the mean number of photons at the input cannot be greater
than NS ∈ [0,∞).
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Example: Pure-loss bosonic channel [WHG12]

Build trade-off codes from an ensemble of the following form:{
p(1−λ)NS

(α),DA′(α)|ψTMS(λ)〉AA′
}
,

where α ∈ C,

p(1−λ)NS
(α) ≡ 1

π (1− λ)NS
exp

{
− |α|2 / [(1− λ)NS ]

}
,

λ ∈ [0, 1] is a photon-number-sharing parameter, DA′(α) is a
“displacement” unitary operator acting on system A′, and |ψTMS(λ)〉AA′ is
a “two-mode squeezed” (TMS) state:

|ψTMS(λ)〉AA′ ≡
∞∑
n=0

√
[λNS ]n

[λNS + 1]n+1
|n〉A|n〉A′ ,
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Example: Pure-loss bosonic channel [WHG12]

The quantum dynamic capacity region for a pure-loss bosonic channel with
transmissivity η ≥ 1/2 is the union of regions of the form:

C + 2Q ≤ g(λNS) + g(ηNS)− g((1− η)λNS),

Q + E ≤ g(ηλNS)− g((1− η)λNS),

C + Q + E ≤ g(ηNS)− g((1− η)λNS),

where λ ∈ [0, 1] is a photon-number-sharing parameter and g(N) is the
entropy of a thermal state with mean photon number N. (This holds
provided that an unsolved minimum-output entropy conjecture is true.)
The region is still achievable if η < 1/2.
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Example: Pure-loss bosonic channel [WHG12]
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Figure: Suppose channel transmits on average 3/4 of the photons to the receiver,
while losing the other 1/4 en route. Take mean photon budget of about
200 photons per channel use at the transmitter. (a) classical–quantum trade-off,
(b) classical comm. with rate-limited entanglement consumption. Big gains over
time-sharing.
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Conclusion

Summary

The quantum dynamic capacity theorem characterizes the net rates at
which a sender and a receiver can generate classical communication,
quantum communication, and entanglement by using a quantum
channel many times

The region simplifies for several channels of interest

Open questions

Is there a simple characterization for distillation tasks? For progress,
see [HW10]

Can we sharpen the theorem? Strong converse bounds, error
exponents, finite-length, second-order, etc.

What about channel simulation tasks? (see, e.g., [BDH+14])
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