Trading resources in quantum Shannon theory

Mark M. Wilde

Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana, USA

mwilde@lsu.edu

Based on arXiv:1206.4886, 1105.0119, 1004.0458, 1001.1732, 0901.3038, 0811.4227 (with Bradler, Guha, Hayden, Hsieh, Touchette) and Chapter 25 of arXiv:1106.1445

NICT, December 15, 2015, Koganei, Tokyo 184-8795, Japan

- Question: What are the net rates at which a sender and receiver can generate classical communication, quantum communication, and entanglement by using a channel many times?
- Many special cases are known, such as the classical capacity theorem [Hol98, SW97], quantum capacity theorem
 [Sch96, SN96, BNS98, BKN00, Llo97, Sho02, Dev05], and the entanglement-assisted classical capacity theorem [BSST02]
- A priori, this question might seem challenging, but there is a surprisingly simple answer for several channels of interest:
 Just combine a single protocol with teleportation, super-dense coding, and entanglement distribution

Resources [Ben04, DHW04, DHW08]

• Let $[c \rightarrow c]$ denote a noiseless classical bit channel from Alice (sender) to Bob (receiver), which performs the following mapping on a qubit density operator

$$\rho = \begin{bmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{bmatrix} \rightarrow \begin{bmatrix} \rho_{00} & 0 \\ 0 & \rho_{11} \end{bmatrix}$$

- Let [q → q] denote a noiseless quantum bit channel from Alice to Bob, which perfectly preserves a qubit density operator.
- Let [qq] denote a noiseless ebit shared between Alice and Bob, which is a maximally entangled state $|\Phi^+\rangle_{AB} = (|00\rangle_{AB} + |11\rangle_{AB})/\sqrt{2}$.
- Entanglement distribution, super-dense coding, and teleportation are non-trivial protocols for combining these resources

Entanglement distribution

- Alice performs local operations (the Hadamard and CNOT) and consumes one use of a noiseless qubit channel to generate one noiseless ebit $|\Phi^+\rangle_{AB}$ shared with Bob.
- Resource inequality: $[q
 ightarrow q] \geq [qq]$

Super-dense coding [BW92]

- Alice and Bob share an ebit. Alice would like to transmit two classical bits x₁x₂ to Bob. She performs a Pauli rotation conditioned on x₁x₂ and sends her share of the ebit over a noiseless qubit channel. Bob then performs a Bell measurement to get x₁x₂.
- Resource inequality: $[q
 ightarrow q] + [qq] \geq 2[c
 ightarrow c]$

Teleportation [BBC⁺93]

- Alice would like to transmit an arbitrary quantum state $|\psi\rangle_{A'}$ to Bob. Alice and Bob share an ebit before the protocol begins. Alice can "teleport" her quantum state to Bob by consuming the entanglement and two uses of a noiseless classical bit channel.
- Resource inequality: $2[c
 ightarrow c] + [qq] \ge [q
 ightarrow q]$

Combining protocols [HW10]

- Think of each protocol as a rate triple (C, Q, E)
- Entanglement distribution is (0, -1, 1)
- Super-dense coding is (2, -1, -1)
- Teleportation is (-2, 1, -1)
- All achievable rate triples are then given by

$$\{(C, Q, E) = \alpha(-2, 1, -1) + \beta(2, -1, -1) + \gamma(0, -1, 1) : \alpha, \beta, \gamma \ge 0\}$$

• Writing as a matrix equation, inverting, and applying constraints $\alpha, \beta, \gamma \geq 0$ gives the following achievable rate region:

$$egin{aligned} \mathcal{L}+\mathcal{Q}+\mathcal{E} &\leq 0, \ \mathcal{Q}+\mathcal{E} &\leq 0, \ \mathcal{L}+2\mathcal{Q} &\leq 0. \end{aligned}$$

Unit resource capacity region [HW10]

The unit resource capacity region is $C + Q + E \le 0$, $Q + E \le 0$, $C + 2Q \le 0$ and is provably optimal.

- Main question: What net rates of classical communication, quantum communication, and entanglement generation can we achieve by using a quantum channel N many times?
- That is, what are the rates C_{out} , Q_{out} , E_{out} , C_{in} , Q_{in} , $E_{in} \ge 0$ achievable in the following resource inequality?

$$egin{aligned} & \langle \mathcal{N}
angle + \mathcal{C}_{\mathsf{in}}[c o c] + \mathcal{Q}_{\mathsf{in}}[q o q] + \mathcal{E}_{\mathsf{in}}[qq] \ & \geq \mathcal{C}_{\mathsf{out}}[c o c] + \mathcal{Q}_{\mathsf{out}}[q o q] + \mathcal{E}_{\mathsf{out}}[qq] \end{aligned}$$

The union of all achievable rate triples
 (C_{out} - C_{in}, Q_{out} - Q_{in}, E_{out} - E_{in}) is called the quantum dynamic capacity region.

Trading resources using a quantum channel

Figure: The most general protocol for generating classical communication, quantum communication, and entanglement with the help of the same respective resources and many uses of a quantum channel.

Background — entropies

- The optimal rates are expressed in terms of entropies, which we review briefly
- Given a density operator σ , the quantum entropy is defined as $H(\sigma) = -\operatorname{Tr} \{\sigma \log \sigma\}.$
- Given a bipartite density operator ρ_{AB} , the quantum mutual information is defined as

$$I(A; B)_{
ho} = H(A)_{
ho} + H(B)_{
ho} - H(AB)_{
ho}$$

• The coherent information $I(A
angle B)_{
ho}$ is defined as

$$I(A
angle B)_{
ho} = H(B)_{
ho} - H(AB)_{
ho}$$

• Given a tripartite density operator ρ_{ABC} , the conditional mutual information is defined as

$$I(A; B|C)_{\rho} = H(AC)_{\rho} + H(BC)_{\rho} - H(C)_{\rho} - H(ABC)_{\rho}$$

Define the state-dependent region $C_{CQE,\sigma}^{(1)}(\mathcal{N})$ as the set of all rates C, Q, and E, such that

$$C + 2Q \le I(AX; B)_{\sigma},$$

$$Q + E \le I(A \rangle BX)_{\sigma},$$

$$C + Q + E \le I(X; B)_{\sigma} + I(A \rangle BX)_{\sigma}.$$

The above entropic quantities are with respect to a classical–quantum state σ_{XAB} , where

$$\sigma_{XAB} \equiv \sum_{x} p_X(x) |x\rangle \langle x|_X \otimes \mathcal{N}_{A' \to B}(\phi^x_{AA'}),$$

and the states $\phi^{\mathbf{X}}_{\mathbf{A}\mathbf{A}'}$ are pure.

Quantum dynamic capacity theorem (statement) [WH12]

Define $\mathcal{C}_{CQE}^{(1)}(\mathcal{N})$ as the union of the state-dependent regions $\mathcal{C}_{CQE,\sigma}^{(1)}(\mathcal{N})$: $\mathcal{C}_{CQE}^{(1)}(\mathcal{N}) \equiv \bigcup_{\sigma} \mathcal{C}_{CQE,\sigma}^{(1)}(\mathcal{N}).$

Then the quantum dynamic capacity region $C_{CQE}(\mathcal{N})$ of a channel \mathcal{N} is equal to the following expression:

$$\mathcal{C}_{\mathsf{CQE}}(\mathcal{N}) = \overline{\bigcup_{k=1}^{\infty} \frac{1}{k} \mathcal{C}_{\mathsf{CQE}}^{(1)}(\mathcal{N}^{\otimes k})},$$

where the overbar indicates the closure of a set.

It is implicit that one should consider states on A'^k instead of A' when taking the regularization.

Example: Qubit dephasing channel

- Take the channel to be the qubit dephasing channel $\mathcal{N}(\rho) = (1 p)\rho + pZ\rho Z$ with dephasing parameter p = 0.2.
- Take the input state as

$$\sigma_{XAA'} \equiv \frac{1}{2} (|0\rangle \langle 0|_X \otimes \phi^0_{AA'} + |1\rangle \langle 1|_X \otimes \phi^1_{AA'}),$$

where

$$\begin{split} \left| \phi^0 \right\rangle_{AA'} &\equiv \sqrt{1/4} |00\rangle_{AA'} + \sqrt{3/4} |11\rangle_{AA'}, \\ \left| \phi^1 \right\rangle_{AA'} &\equiv \sqrt{3/4} |00\rangle_{AA'} + \sqrt{1/4} |11\rangle_{AA'}. \end{split}$$

• The state σ_{XAB} resulting from the channel is $\mathcal{N}_{A'\to B}(\sigma_{XAA'})$

Example: Qubit dephasing channel (ctd.)

Figure: An example of the state-dependent achievable region $C_{CQE\sigma}^{(1)}(\mathcal{N})$ corresponding to a state σ_{XABE} that arises from a qubit dephasing channel with dephasing parameter p = 0.2. The figure depicts the octant corresponding to the consumption of entanglement and the generation of classical and quantum communication.

Direct part of the quantum dynamic capacity theorem

Entanglement-assisted classical and quantum communication

• There is a protocol that implements the following resource inequality:

$$\langle \mathcal{N}
angle + rac{1}{2} I(A; E|X)_
ho \left[qq
ight] \geq rac{1}{2} I(A; B|X)_
ho \left[q
ightarrow q
ight] + I(X; B)_
ho \left[c
ightarrow c
ight]$$

where ρ_{XABE} is a state of the following form:

$$\rho_{XABE} \equiv \sum_{x} p_{X}(x) |x\rangle \langle x|_{X} \otimes \mathcal{U}_{A' \to BE}^{\mathcal{N}}(\varphi_{AA'}^{x}),$$

the states $\varphi_{AA'}^{\times}$ are pure, and $U_{A' \to BE}^{\mathcal{N}}$ is an isometric extension of the channel $\mathcal{N}_{A' \to B}$.

• Combine this with the unit protocols of teleportation, super-dense coding, and entanglement distribution

Direct part of the quantum dynamic capacity theorem

• Combining the protocols gives the following set of achievable rates:

$$\begin{bmatrix} C\\ Q\\ E \end{bmatrix} = \begin{bmatrix} 0 & 2 & -2\\ -1 & -1 & 1\\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} \alpha\\ \beta\\ \gamma \end{bmatrix} + \begin{bmatrix} I(X;B)_{\sigma}\\ \frac{1}{2}I(A;B|X)_{\sigma}\\ -\frac{1}{2}I(A;E|X)_{\sigma} \end{bmatrix},$$

where α , β , $\gamma \ge 0$.

• Inverting the matrix equation, applying the constraints α , β , $\gamma \ge 0$, and using entropy identities gives the following region:

$$egin{aligned} \mathcal{C}+2\mathcal{Q}&\leq \mathcal{I}(\mathcal{A}X;\mathcal{B})_{\sigma},\ \mathcal{Q}+\mathcal{E}&\leq \mathcal{I}(\mathcal{A}ar{\mathcal{B}}\mathcal{X})_{\sigma},\ \mathcal{C}+\mathcal{Q}+\mathcal{E}&\leq \mathcal{I}(X;\mathcal{B})_{\sigma}+\mathcal{I}(\mathcal{A}ar{\mathcal{B}}\mathcal{X})_{\sigma}, \end{aligned}$$

which establishes the achievability part.

How to achieve the following resource inequality?

$$\langle \mathcal{N}
angle + rac{1}{2} I(A; E|X)_{
ho} [qq] \geq rac{1}{2} I(A; B|X)_{
ho} [q
ightarrow q] + I(X; B)_{
ho} [c
ightarrow c]$$

Tools for achievability part [Wil15, Chapter 25]

- HSW classical capacity theorem [Hol98, SW97]
- Entanglement-assisted classical capacity theorem [BSST02] (see also [HDW08])
- Modification of a classical trick called "superposition coding" [Sho04]
- Another trick called coherent communication [Har04, DHW08]

HSW theorem (constant-composition variant)

- Fix an ensemble $\{p_X(x), \rho_A^x\}$ and set $\sigma_B^x \equiv \mathcal{N}_{A \to B}(\rho_A^x)$.
- Now select a typical type class T_t , which is a set of all the sequences x^n with
 - **1** the same empirical distribution t(x)
 - 2 t(x) deviates from the distribution $p_X(x)$ by no more than $\delta > 0$
- All the sequences in the same type class are related to one another by a permutation, and all of them are strongly typical
- Select a code at random by picking all of the codewords independently and uniformly at random from the typical type class
- We can then conclude the existence of a codebook $\{x^n(m)\}_{m\in\mathcal{M}}$ and a decoding POVM $\{\Lambda^m_{\mathcal{B}^n}\}_{m\in\mathcal{M}}$ such that $\mathcal{M}\approx 2^{nI(X;\mathcal{B})}$ and

$$\mathsf{Tr}\left\{\Lambda_{B^n}^m\mathcal{N}^{\otimes n}\left(\rho_{A^n}^{\times^n(m)}\right)\right\}\geq 1-\varepsilon\quad\forall m\in\mathcal{M}$$

- \bullet Allow Alice and Bob to share a maximally entangled state $|\Phi\rangle_{AB}$
- They then induce the following ensemble by Alice applying a Heisenberg–Weyl operator uniformly at random:

$$\left\{ d^{-2}, \left(\mathcal{N}_{A \rightarrow B'} \otimes \mathsf{id}_B \right) \left(\Phi_{AB}^{x,z} \right) \right\}.$$

where $|\Phi^{x,z}\rangle_{AB} = X(x)_A Z(z)_A |\Phi\rangle_{AB}$. (This is the same ensemble from super-dense coding if \mathcal{N} is the identity channel.)

 By the HSW theorem and some entropy manipulations, we can conclude that the mutual information I(B'; B)_{N(Φ)} is an achievable rate.

Entanglement-assisted coding (general version)

• Allow Alice and Bob to share many copies of a pure bipartite state

$$|\varphi\rangle_{AB} \equiv \sum_{x} \sqrt{p_X(x)} |x\rangle_A |x\rangle_B.$$

Much degeneracy in many copies of this state—can rewrite it as

$$|\varphi\rangle_{AB}^{\otimes n} = \sum_{x^n} \sqrt{p_{X^n}(x^n)} |x^n\rangle_{A^n} |x^n\rangle_{B^n} = \sum_t \sqrt{p(t)} |\Phi_t\rangle_{A^nB^n}$$

where $|\Phi_t\rangle_{A^nB^n}$ is maximally entangled on a type class subspace t. • Take encoding unitary to have the form

$$U(s) \equiv \bigoplus_t (-1)^{b_t} V(x_t, z_t)$$

where $V(x_t, z_t)$ is a Heisenberg–Weyl operator for a type class subspace t and $s = ((x_t, z_t, b_t)_t)$.

Entanglement-assisted coding (general version)

- Random coding: pick encoding unitaries U(s) uniformly at random
- The entanglement-assisted quantum codewords

$$|\varphi_m\rangle_{A^nB^n} = (U_{A^n}(s(m))\otimes I_{B^n})|\varphi\rangle_{AB}^{\otimes n}$$

have the following interesting property:

$$|\varphi_m\rangle_{A^nB^n} = \left(I_{A^n}\otimes U_{B^n}^T(s(m))\right)|\varphi\rangle_{AB}^{\otimes n},$$

which allows us to conclude that the reduced state on the channel input is the same for all codewords:

$$\mathsf{Tr}_{B^n}\left\{|\varphi_m
angle\langle \varphi_m|_{A^nB^n}
ight\}=\varphi_A^{\otimes n}$$

(privacy without access to Bob's share of the entanglement)

• Can achieve the mutual information rate $I(B'; B)_{\mathcal{N}(\varphi)}$

"Superposition coding" [Sho04]

• "Layer" an HSW code "on top of" several EA codes:

• This achieves the following resource inequality:

 $\langle \mathcal{N}
angle + \mathcal{H}(A|X)_{\rho} [qq] \ge I(A; B|X)_{\rho} [c \to c] + I(X; B)_{\rho} [c \to c]$ where $\rho_{XAB} \equiv \sum_{x} p_{X}(x) |x\rangle \langle x|_{X} \otimes \mathcal{N}_{A' \to B}(\varphi^{x}_{AA'}).$

- It is possible to "upgrade" the classical bits transmitted by the entanglement-assisted codes to "coherent bits", because they are private from the environment of the channel [DHW08]
- We can then use a trick called the coherent communication identity [Har04] to conclude that the desired resource inequality is achievable:

$$\langle \mathcal{N} \rangle + \frac{1}{2} I(A; E|X)_{\rho} [qq] \geq \frac{1}{2} I(A; B|X)_{\rho} [q \rightarrow q] + I(X; B)_{\rho} [c \rightarrow c]$$

where $\rho_{XABE} \equiv \sum_{x} p_X(x) |x\rangle \langle x|_X \otimes \mathcal{U}^{\mathcal{N}}_{A' \to BE}(\varphi^x_{AA'}).$

• Consider the most general protocol:

• Make use of quantum data processing and dimension bounds for information quantities

Computing the boundary of the region [WH12]

- Let $\vec{w} \equiv (w_C, w_Q, w_E) \in \mathbb{R}^3$ be a weight vector, $\vec{R} \equiv (C, Q, E)$ a rate vector, and $\mathcal{E} \equiv \{p_X(x), \phi^x_{AA'}\}$ an ensemble.
- Can phrase the task of computing the boundary of the single-copy capacity region as an optimization problem:

$$P^*(\vec{w}) \equiv \sup_{\vec{R},\mathcal{E}} \vec{w} \cdot \vec{R}$$

subject to $C + 2Q \leq I(AX; B)_{\sigma},$
 $Q + E \leq I(A \mid BX)_{\sigma},$
 $C + Q + E \leq I(X; B)_{\sigma} + I(A \mid BX)_{\sigma},$

where the optimization is with respect to all rate vectors \vec{R} and ensembles \mathcal{E} , with σ_{XAB} a state of the previously given form.

Quantum dynamic capacity formula [WH12]

 By linear programming duality, if P^{*}(w) < ∞, then the optimization problem is equivalent to computing the quantum dynamic capacity formula, defined as

$$D_{\vec{\lambda}}(\mathcal{N}) \equiv \max_{\sigma} \lambda_1 I(AX; B)_{\sigma} + \lambda_2 I(A \rangle BX)_{\sigma} + \lambda_3 \left[I(X; B)_{\sigma} + I(A \rangle BX)_{\sigma} \right],$$

where σ_{XAB} is a state of the previously given form and $\vec{\lambda} \equiv (\lambda_1, \lambda_2, \lambda_3)$ is a vector of Lagrange multipliers such that $\lambda_1, \lambda_2, \lambda_3 \ge 0$.

Suppose for a given channel N that D_i(N^{⊗n}) = nD_i(N) ∀n ≥ 1 and i ≥ 0. Then the computation of the boundary simplifies significantly. This happens for a number of important channels.

• Erasure channel is defined as follows:

$$\mathcal{N}^{\varepsilon}(
ho) = (1 - \varepsilon) \,
ho + \varepsilon | oldsymbol{e}
angle \langle oldsymbol{e} |,$$

where ρ is a *d*-dimensional input state, $|e\rangle$ is an erasure flag state orthogonal to all inputs (so that the output space has dimension d + 1), and $\varepsilon \in [0, 1]$ is the erasure probability.

• Let $\mathcal{N}^{\varepsilon}$ be a quantum erasure channel with $\varepsilon \in [0, 1/2]$. Then the quantum dynamic capacity region $\mathcal{C}_{CQE}(\mathcal{N}^{\varepsilon})$ is equal to the union of the following regions, obtained by varying $\lambda \in [0, 1]$:

$$egin{aligned} \mathcal{C} + 2 \mathcal{Q} &\leq (1 - arepsilon) \left(1 + \lambda
ight) \log d, \ \mathcal{Q} + \mathcal{E} &\leq (1 - 2arepsilon) \lambda \log d, \ \mathcal{C} + \mathcal{Q} + \mathcal{E} &\leq (1 - arepsilon - arepsilon \lambda) \log d. \end{aligned}$$

Example: Quantum erasure channel

Figure: The quantum dynamic capacity region for the (qubit) quantum erasure channel with $\varepsilon = 1/4$. The plot demonstrates that time-sharing is optimal.

The dynamic capacity region $C_{CQE}(\overline{\Delta}_p)$ of a dephasing channel with dephasing parameter $p \in [0, 1]$ is the set of all C, Q, and E such that

$$egin{aligned} \mathcal{C} + 2 & \mathcal{Q} \leq 1 + h_2(
u) - h_2(\gamma(
u, p)), \ & \mathcal{Q} + \mathcal{E} \leq h_2(
u) - h_2(\gamma(
u, p)), \ & \mathcal{C} + & \mathcal{Q} + \mathcal{E} \leq 1 - h_2(\gamma(
u, p)), \end{aligned}$$

where $\nu \in [0, 1/2]$, h_2 is the binary entropy function, and

$$\gamma(\nu, p) \equiv rac{1}{2} + rac{1}{2}\sqrt{1 - 16 \cdot rac{p}{2}\left(1 - rac{p}{2}
ight)
u(1 -
u)}.$$

Example: Qubit dephasing channel

Figure: A plot of the dynamic capacity region for a qubit dephasing channel with dephasing parameter p = 0.2. Slight improvement over time-sharing.

• Pure-loss channel is defined from the following input-output relation:

$$egin{array}{rcl} \hat{a} &
ightarrow & \hat{b} = \sqrt{\eta} \; \hat{a} + \sqrt{1-\eta} \; \hat{e}, \ \hat{e} &
ightarrow & \hat{e}' = -\sqrt{1-\eta} \; \hat{a} + \sqrt{\eta} \; \hat{e}, \end{array}$$

where \hat{a} is the input annihilation operator for the sender, \hat{e} is the input annihilation operator for the environment, and $\eta \in [0, 1]$ is the transmissivity of the channel.

• Place a photon number constraint on the input mode to the channel, such that the mean number of photons at the input cannot be greater than $N_S \in [0, \infty)$.

Example: Pure-loss bosonic channel [WHG12]

Build trade-off codes from an ensemble of the following form:

$$\left\{p_{(1-\lambda)N_{\mathsf{S}}}(\alpha), D_{\mathsf{A}'}(\alpha)|\psi_{\mathsf{TMS}}(\lambda)\rangle_{\mathsf{A}\mathsf{A}'}\right\},\$$

where $\alpha \in \mathbb{C}$,

$$p_{(1-\lambda)N_{S}}(\alpha) \equiv \frac{1}{\pi (1-\lambda) N_{S}} \exp \left\{-\left|\alpha\right|^{2} / \left[(1-\lambda) N_{S}\right]\right\},$$

 $\lambda \in [0, 1]$ is a photon-number-sharing parameter, $D_{A'}(\alpha)$ is a "displacement" unitary operator acting on system A', and $|\psi_{\mathsf{TMS}}(\lambda)\rangle_{AA'}$ is a "two-mode squeezed" (TMS) state:

$$|\psi_{\mathsf{TMS}}(\lambda)\rangle_{\mathcal{AA}'} \equiv \sum_{n=0}^{\infty} \sqrt{\frac{[\lambda N_S]^n}{[\lambda N_S + 1]^{n+1}}} |n\rangle_{\mathcal{A}} |n\rangle_{\mathcal{A}'},$$

The quantum dynamic capacity region for a pure-loss bosonic channel with transmissivity $\eta \ge 1/2$ is the union of regions of the form:

$$egin{aligned} \mathcal{C}+2\mathcal{Q} &\leq \mathcal{g}(\lambda \mathcal{N}_{\mathcal{S}})+\mathcal{g}(\eta \mathcal{N}_{\mathcal{S}})-\mathcal{g}((1-\eta)\,\lambda \mathcal{N}_{\mathcal{S}}), \ \mathcal{Q}+\mathcal{E} &\leq \mathcal{g}(\eta \lambda \mathcal{N}_{\mathcal{S}})-\mathcal{g}((1-\eta)\,\lambda \mathcal{N}_{\mathcal{S}}), \ \mathcal{C}+\mathcal{Q}+\mathcal{E} &\leq \mathcal{g}(\eta \mathcal{N}_{\mathcal{S}})-\mathcal{g}((1-\eta)\,\lambda \mathcal{N}_{\mathcal{S}}), \end{aligned}$$

where $\lambda \in [0, 1]$ is a photon-number-sharing parameter and g(N) is the entropy of a thermal state with mean photon number N. (This holds provided that an unsolved minimum-output entropy conjecture is true.) The region is still achievable if $\eta < 1/2$.

Example: Pure-loss bosonic channel [WHG12]

Figure: Suppose channel transmits on average 3/4 of the photons to the receiver, while losing the other 1/4 en route. Take mean photon budget of about 200 photons per channel use at the transmitter. (a) classical-quantum trade-off, (b) classical comm. with rate-limited entanglement consumption. Big gains over time-sharing.

Summary

- The quantum dynamic capacity theorem characterizes the net rates at which a sender and a receiver can generate classical communication, quantum communication, and entanglement by using a quantum channel many times
- The region simplifies for several channels of interest

Open questions

- Is there a simple characterization for distillation tasks? For progress, see [HW10]
- Can we sharpen the theorem? Strong converse bounds, error exponents, finite-length, second-order, etc.
- What about channel simulation tasks? (see, e.g., [BDH⁺14])

References I

- [BBC⁺93] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. *Physical Review Letters*, 70(13):1895–1899, March 1993.
- [BDH⁺14] Charles H. Bennett, Igor Devetak, Aram W. Harrow, Peter W. Shor, and Andreas Winter. The quantum reverse Shannon theorem and resource tradeoffs for simulating quantum channels. *IEEE Transactions on Information Theory*, 60(5):2926–2959, May 2014. arXiv:0912.5537.
- [Ben04] Charles H. Bennett. A resource-based view of quantum information. *Quantum Information and Computation*, 4:460–466, December 2004.
- [BKN00] Howard Barnum, Emanuel Knill, and Michael A. Nielsen. On quantum fidelities and channel capacities. *IEEE Transactions on Information Theory*, 46(4):1317–1329, July 2000. arXiv:quant-ph/9809010.
- [BNS98] Howard Barnum, M. A. Nielsen, and Benjamin Schumacher. Information transmission through a noisy quantum channel. *Physical Review A*, 57(6):4153–4175, June 1998.

References II

[BSST02] Charles H. Bennett, Peter W. Shor, John A. Smolin, and Ashish V. Thapliyal. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. *IEEE Transactions on Information Theory*, 48(10):2637–2655, October 2002. arXiv:quant-ph/0106052.

- [BW92] Charles H. Bennett and Stephen J. Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. *Physical Review Letters*, 69(20):2881–2884, November 1992.
- [Dev05] Igor Devetak. The private classical capacity and quantum capacity of a quantum channel. IEEE Transactions on Information Theory, 51(1):44–55, January 2005. arXiv:quant-ph/0304127.
- [DHW04] Igor Devetak, Aram W. Harrow, and Andreas Winter. A family of quantum protocols. *Physical Review Letters*, 93(23):239503, December 2004. arXiv:quant-ph/0308044.

[DHW08] Igor Devetak, Aram W. Harrow, and Andreas Winter. A resource framework for quantum Shannon theory. *IEEE Transactions on Information Theory*, 54(10):4587–4618, October 2008. arXiv:quant-ph/0512015.

References III

[Har04] Aram Harrow. Coherent communication of classical messages. *Physical Review Letters*, 92(9):097902, March 2004. arXiv:quant-ph/0307091.

- [HDW08] Min-Hsiu Hsieh, Igor Devetak, and Andreas Winter. Entanglement-assisted capacity of quantum multiple-access channels. *IEEE Transactions on Information Theory*, 54(7):3078–3090, July 2008. arXiv:quant-ph/0511228.
- [Hol98] Alexander S. Holevo. The capacity of the quantum channel with general signal states. IEEE Transactions on Information Theory, 44(1):269–273, January 1998. arXiv:quant-ph/9611023.
- [HW10] Min-Hsiu Hsieh and Mark M. Wilde. Trading classical communication, quantum communication, and entanglement in quantum Shannon theory. *IEEE Transactions on Information Theory*, 56(9):4705–4730, September 2010. arXiv:0901.3038.
- [Llo97] Seth Lloyd. Capacity of the noisy quantum channel. Physical Review A, 55(3):1613–1622, March 1997. arXiv:quant-ph/9604015.
- [Sch96] Benjamin Schumacher. Sending entanglement through noisy quantum channels. *Physical Review A*, 54(4):2614–2628, October 1996.

References IV

- [Sh002] Peter W. Shor. The quantum channel capacity and coherent information. In *Lecture Notes, MSRI Workshop on Quantum Computation,* 2002.
- [Sho04] Peter W. Shor. Quantum Information, Statistics, Probability (Dedicated to A. S. Holevo on the occasion of his 60th Birthday): The classical capacity achievable by a quantum channel assisted by limited entanglement. Rinton Press, Inc., 2004. arXiv:quant-ph/0402129.
- [SN96] Benjamin Schumacher and Michael A. Nielsen. Quantum data processing and error correction. *Physical Review A*, 54(4):2629–2635, October 1996. arXiv:quant-ph/9604022.
- [SW97] Benjamin Schumacher and Michael D. Westmoreland. Sending classical information via noisy quantum channels. *Physical Review A*, 56(1):131–138, July 1997.
- [WH12] Mark M. Wilde and Min-Hsiu Hsieh. The quantum dynamic capacity formula of a quantum channel. *Quantum Information Processing*, 11(6):1431–1463, December 2012. arXiv:1004.0458.

- [WHG12] Mark M. Wilde, Patrick Hayden, and Saikat Guha. Information trade-offs for optical quantum communication. *Physical Review Letters*, 108(14):140501, April 2012. arXiv:1105.0119.
- [Wil15] Mark M. Wilde. From Classical to Quantum Shannon Theory. 2015. arXiv:1106.1445 (preprint for a 2nd edition).