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What is capacity?
Given is a description of a quantum channel 
(perhaps in terms of a Kraus representation):

where

Capacity is the maximum rate at
which a sender can transmit data reliably to
a receiver using this channel many times.
(We will focus on classical data transmission here.)



  

What is capacity? (ctd.)
As Shannon did, allow for a slight error in the
transmission, but demand that it vanishes in
the limit of many channel uses while operating
at a fixed rate of communication

An (n,R,ε) protocol uses the channel n times
at a rate R while having error no larger than ε.



  

What is capacity? (ctd.)
A rate R is achievable if there exists a sequence
of (n,R – δ,ε) protocols for all ε,δ > 0 and
sufficiently large n.

The capacity is defined operationally and is a
function of a channel.
(Observe that the definitions above effectively coarse grain
 away all parameters except for rate.)

The capacity of a channel is defined as the
supremum of all achievable rates.

A major goal of quantum information theory is to
identify a tractable formula for capacity.



  

How to prove a capacity theorem?

First part: Demonstrate the existence of
(n,R – δ,ε) protocols (codes) operating
at some rate R.

This identifies a lower bound on capacity

Usual approach is to pick codes at random
à la Shannon and show that some code in the
ensemble meets the performance criteria.



  

How to prove cap. theorem? (ctd.)

This serves as an upper bound on capacity.

Second part: Identify a rate above which it is
impossible to communicate error free.
(known as a weak converse rate)

If the lower and upper bounds coincide, then
you have characterized capacity.

There is an important practical question of
whether the formulas characterizing capacity
are simple to compute and many of the open
questions in QIT revolve around this.



  

Holevo-Schumacher-
Westmoreland Theorem

Holevo, Schumacher, and Westmoreland found
that a quantum generalization of Shannon's
formula characterizes capacity.

Define the Holevo information of a channel as

where



  

HSW Theorem (ctd.)

Holevo, Schumacher, and Westmoreland
characterized capacity as a regularization of
the Holevo information:

If the Holevo information is additive for a channel
for which we are trying to determine capacity,
then capacity is given by

However, Hastings proved that it does not
have to be additive. (He proved the existence of
a channel for which it is not additive.)



  

Weak vs. Strong Converse
The converse part of the HSW theorem due
to Holevo (1973) only establishes what is called
a “weak converse.”

This suggests that there might be room for
a trade-off between rate and error.

A strong converse theorem (if it holds) rules out
such a possibility. It states that the error
probability converges to one in the limit as n
becomes large if rate exceeds capacity

That is, it states that there cannot be an error-free
communication scheme if rate exceeds capacity.



  

Weak vs. Strong Converse

Plot should be interpreted in the large n limit

(Approx. 
to

1 – C / R)



  

Why do we want strong converses?

Strengthens the interpretation of capacity as
a very sharp dividing line

(analogous to a phase transition)

Helpful in proving the security of particular
models of cryptography in which the
eavesdropper is limited to having noisy storage

(see Koenig, Wehner, Wullschleger arXiv:0906.1030)



  

What was already known?

Ogawa and Nagaoka proved the same theorem
with a different approach using Rényi entropies
--- the “Arimoto” approach (1999)

Nayak proved a strong converse for classical
capacity of noiseless qubit channels (1999)
(he did not call it this, but the result follows)

Koenig and Wehner proved it for the classical
capacity of several covariant channels (2006)

Winter proved a strong converse holds for
channels with classical inputs and quantum
outputs using a “Wolfowitz” approach (1999)



  

New Results

3) Strong converse for entanglement-assisted
capacity (Gupta and W 2013)

1) Strong converse for the classical capacity
of entanglement-breaking and Hadamard
channels (W, Winter, Yang 2013)

4) Strong converse rates for classical comm.
over thermal bosonic channels (Bardhan and W 2013)

2) Strong converse for classical capacity of
pure-loss bosonic channel (W and Winter 2013)

For this talk, we focus on 2), 4), & then 1) if time



  

Review of SC for noiseless channel

Consider any code for communication. It consists
of density operators ρm, depending on the
message m, and a decoding POVM {Λm}. 

Its average success probability is



  

Review of SC for noiseless channel

If R > 1, the success probability decays
exponentially fast to zero.



  

Review of SC for noiseless channel

1) success probability

Albeit simple, the proof of the strong converse
for the noiseless qubit channel highlights
a fundamental interplay between

3) dimension of the space for encoding

2) number of messages (related to rate)

4) purity of the channel
(infinity norm of the output states)

Reasoning in a similar way for bosonic channels
helps in establishing strong converse rates for them



  

What is a pure-loss bosonic channel?

Pure-Loss Bosonic Channel
(models fiber optic or free space transmission)

(vacuum)

Heisenberg input-output relation for channel:



  

Pure-loss bosonic channel capacity
Classical capacity of pure-loss channel is exactly

where η is transmissivity of channel,
N

S
 is the mean input photon number,
and g(x) = (x+1) log(x+1) – x log x
is the entropy of a thermal state

with photon number x

Can achieve this capacity by selecting
coherent states randomly according to a

complex, isotropic Gaussian prior with variance N
S

Holevo and Werner, arXiv:quant-ph/9912067
Giovannetti et al., Physical Review Letters 92, 027902 (2004)



  

SC for pure-loss bosonic channel
Can prove that a strong converse does not hold
under a mean photon number constraint

However, instead impose a maximum photon
number constraint, i.e., 

where

Joint work with Andreas Winter, arXiv:1308.6732



  

SC for pure-loss bosonic channel

An upper bound on the dimension of the subspace
with photon number no larger than n(ηNS) is

where δ can be chosen arbitrarily small
as n gets large.

If the input is in the subspace with photon
number no larger than nNS, then the output is with
high probability in a subspace of photon number
no larger than n(ηNS).
(Physically intuitive, appeal to LLN for a proof)



  

SC for pure-loss bosonic channel

The purity of the channel is maximal because
we can always send in a coherent state, which
retains its purity for the pure-loss bosonic channel.

By arguing along lines very similar to the proof for
the noiseless channel, we arrive at an upper bound
on the success probability, that is essentially



  

Thermal bosonic channels
(thermal state)

Known lower bound on capacity:

Known (weak) upper bounds on capacity:

Koenig and Smith 2012

Giovannetti et al. 2004



  

SC rates for thermal bosonic channels

Joint work with Bhaskar Roy Bardhan (LSU)

To get the Koenig-Smith bound, use the fact that
a thermal channel is equivalent to a pure-loss
channel with transmissivity ηNS / ((1-η)NB + 1)
followed by an amplifier channel

Recent work with Bardhan shows that both of
these upper bounds are strong converse rates

Then apply strong converse for pure-loss channel



  

SC rates for thermal bosonic channels

To recover the Giovannetti et al. bound, first prove 
that if the input is in the subspace with photon
number no larger than nNS, then the output
of the thermal channel is with high probability
in the subspace with photon number no larger
than n (η NS + (1-η) NB)      (again with LLN)

Upper bound the purity of the channel with the
smooth min-entropy, which we can then relate
to the collision entropy (Renyi entropy of order 2)

Giovannetti et al. have shown that the state leading
to the minimum output collision entropy is the vacuum.

We then get the following upper bound:



  

SC for classical capacity of 
entanglement-breaking channels

Joint work with Andreas Winter and Dong Yang, arXiv:1306.1586

An entanglement-breaking channel is equivalent
to a measurement of the input followed by a
preparation of a state conditioned on the
outcome of the measurement:

We have shown that a strong converse holds
for the classical capacity of these channels



  

SC for classical cap. of EB channels

Begin with the “generalized divergence” framework
of Sharma and Warsi (arXiv:1205.1712).

A measure is called a generalized divergence if it
satisfies monotonicity under quantum operations:

Generalized Holevo information of a channel:



  

SC for classical cap. of EB channels

Using monotonicity, we find the following relation
between success probability, rate, and
generalized Holevo information for any code:

where δ is the generalized divergence
for classical states



  

Sandwiched Rényi relative entropy

We can take the divergence to be the sandwiched
Rényi relative entropy, defined as

This divergence already has a bit of history:

V. Jaksic, Y. Ogata, Y. Pautrat, C.-A. Pillet, arXiv:1106.3786

M. Tomamichel. Smooth Entropies: A Tutorial. QCRYPT 2012

S. Fehr. Presentation at Beyond IID Workshop. January 2013

Muller-Lennert. ETH Zurich Master's thesis. April 2013

W, Winter, Yang. arXiv:1306.1586

Müller-Lennert, Dupuis, Szehr, Fehr, Tomamichel. arXiv:1306.3142



  

Monotonicity of sandwiched entropy

Monotonicity holds for all α in [1/2, ∞]

Frank and Lieb. arXiv:1306.5358

(see also arXiv:1306.1586, arXiv:1306.3142,
 Beigi arXiv:1306.5920 for less general ranges of α)

Evaluating the following bound

for the sandwiched relative entropy gives

relevant regime is α in (1,2]



  

SC for classical cap. of EB channels

From here, we can recover the strong converse
by a now standard argument due to Ogawa and
Nagaoka (1999). (Pick α close enough to 1)

Then upper bound on success probability becomes

If the sandwiched Renyi-Holevo information is
additive, in the sense that

Goal: Show additivity!



  

Additivity of Rényi-Holevo information 
for EB channels

Next observation:
King proved that the maximum output α-norm is
multiplicative for an EB map and any other CP map

First observation:
Sandwiched Renyi entropy is related to a norm

Putting these two observations together
(along with a little more) gives additivity of the Rényi-Holevo
information, from which we get the strong converse



  

SC for entanglement-assisted capacity

Joint work with Manish K. Gupta (LSU), arXiv:1310.7028

Entanglement-assisted setting for communication

Suppose finite-dimensional channel here...



  

SC for entanglement-assisted capacity

Establish a generalized divergence framework
by appealing to Propositions 17 and 18
of Matthews-Wehner arXiv:1210.4722

Prove additivity of sandwiched quantum mutual
information by appealing to multiplicativity result
of Devetak, Junge, King, Ruskai in
arXiv:quant-ph/0506196

Find an upper bound on the success probability
of any entanglement-assisted code:



  

Conclusions

Establishing strong converse theorems is an
important step forward for QIT b/c they strengthen
the interpretation of capacity and have applications
in certain models of cryptography

Main open questions: 

Determine whether strong converse theorems
hold in other settings

What is the relation to (non-)additivity?

Characterize second-order behavior


