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Main message

Entropy inequalities established in the 1970s are a mathematical
consequence of the postulates of quantum physics

They are helpful in determining the ultimate limits on many physical
processes

Many of these entropy inequalities are equivalent to each other, so we
can say that together they constitute a fundamental law of quantum
information theory

There has been recent interest in refining these inequalities, trying to
understand how well one can attempt to reverse an irreversible
physical process

This talk will discuss progress in this direction
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Background — quantum mechanics

Quantum states

The state of a quantum system is specified by a positive semidefinite
operator with trace equal to one, usually denoted by ρ, σ, τ , etc.

Quantum channels

Any physical process can be written as a quantum channel.
Mathematically, a quantum channel is specified by a linear, completely
positive, trace preserving map, so that it takes an input quantum state to
an output quantum state. Quantum channels are usually denoted by
N ,M,P, etc.

Quantum measurements

A quantum measurement is a special type of quantum channel with
quantum input and classical output
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Background — entropies

Umegaki relative entropy [Ume62]

The quantum relative entropy is a measure of dissimilarity between two
quantum states. Defined for states ρ and σ as

D(ρ‖σ) ≡ Tr{ρ[log ρ− log σ]}

whenever supp(ρ) ⊆ supp(σ) and +∞ otherwise

Physical interpretation with quantum Stein’s lemma [HP91, NO00]

Given are n quantum systems, all of which are prepared in either the state
ρ or σ. With a constraint of ε ∈ (0, 1) on the Type I error of
misidentifying ρ, then the optimal error exponent for the Type II error of
misidentifying σ is D(ρ‖σ).
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Background — entropies

Relative entropy as “mother” entropy

Many important entropies can be written in terms of relative entropy:

H(A)ρ ≡ −D(ρA‖IA) (entropy)

H(A|B)ρ ≡ −D(ρAB‖IA ⊗ ρB) (conditional entropy)

I (A;B)ρ ≡ D(ρAB‖ρA ⊗ ρB) (mutual information)

I (A;B|C )ρ ≡ D(ρABC‖ exp{log ρAC + log ρBC − log ρC}) (cond. MI)

Equivalences

H(A|B)ρ = H(AB)ρ − H(B)ρ

I (A;B)ρ = H(A)ρ + H(B)ρ − H(AB)ρ

I (A;B)ρ = H(B)ρ − H(B|A)ρ

I (A;B|C )ρ = H(AC )ρ + H(BC )ρ − H(ABC )ρ − H(C )ρ

I (A;B|C )ρ = H(B|C )ρ − H(B|AC )ρ
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Fundamental law of quantum information theory

Monotonicity of quantum relative entropy [Lin75, Uhl77]

Let ρ and σ be quantum states and let N be a quantum channel. Then

D(ρ‖σ) ≥ D(N (ρ)‖N (σ))

“Distinguishability does not increase under a physical process”
Characterizes a fundamental irreversibility in any physical process

Proof approaches

Lieb concavity theorem [L73]

relative modular operator method (see, e.g., [NP04])

quantum Stein’s lemma [BS03]
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Strong subadditivity

Strong subadditivity [LR73]

Let ρABC be a tripartite quantum state. Then

I (A;B|C )ρ ≥ 0

Equivalent statements (by definition)

Entropy sum of two individual systems is larger than entropy sum of
their union and intersection:

H(AC )ρ + H(BC )ρ ≥ H(ABC )ρ + H(C )ρ

Conditional entropy does not decrease under the loss of system A:

H(B|C )ρ ≥ H(B|AC )ρ
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Other equivalent entropy inequalities

Monotonicity of relative entropy under partial trace

Let ρAB and σAB be quantum states. Then D(ρAB‖σAB) ≥ D(ρB‖σB)

Joint convexity of relative entropy

Let pX be a probability distribution and let {ρx} and {σx} be sets of
quantum states. Let ρ ≡∑x pX (x)ρx and σ ≡∑x pX (x)σx . Then∑

x

pX (x)D(ρx‖σx) ≥ D(ρ‖σ)

Concavity of conditional entropy

Let pX be a probability distribution and let {ρxAB} be a set of quantum
states. Let ρAB ≡

∑
x pX (x)ρxAB . Then

H(A|B)ρ ≥
∑
x

pX (x)H(A|B)ρx
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Circle of equivalences — the fundamental law of QIT

1. Strong subadditivity ⇒ 2. Concavity of conditional entropy

⇒
⇒

3. Monotonicity of relative entropy
    under partial trace

5. Monotonicity of
    relative entropy

4. Joint convexity of
    relative entropy

⇒ ⇒

(discussed in [Rus02])
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How to establish circle of equivalences?

1. Strong subadditivity ⇒ 2. Concavity of conditional entropy

⇒
⇒

3. Monotonicity of relative entropy
    under partial trace

5. Monotonicity of
    relative entropy

4. Joint convexity of
    relative entropy

⇒ ⇒

(1⇒ 2) pick A to be a classical system in I (A;B|C ) ≥ 0.

(2⇒ 3) Apply 2 to {( 1
x+1 , σAB), ( x

x+1 , ρAB)}, multiply by x+1
x , and

take limx↘0

(3⇒ 4) Take A classical in D(ρAB‖σAB) ≥ D(ρB‖σB)

(4⇒ 5) Stinespring, unitary averaging, and properties of D(ρ‖σ)

(5⇒ 1) Choose ρ = ωABC , σ = ωAC ⊗ ωB , and N = TrA in
D(ρ‖σ) ≥ D(N (ρ)‖N (σ))

Mark M. Wilde (LSU) January 6, 2015 10 / 31



Equality conditions

When does equality in monotonicity of relative entropy hold?

D(ρ‖σ) = D(N (ρ)‖N (σ)) iff ∃ a recovery map RP
σ,N such that

ρ = (RP
σ,N ◦ N )(ρ), σ = (RP

σ,N ◦ N )(σ)

This “Petz” recovery map has the following explicit form [HJPW04]:

RP
σ,N (ω) ≡ σ1/2N †

(
(N (σ))−1/2ω(N (σ))−1/2

)
σ1/2

Classical case: Distributions pX and qX and a channel N (y |x). Then
the Petz recovery map RP(x |y) is given by the Bayes theorem:

RP(x |y)qY (y) = N (y |x)qX (x)

where qY (y) ≡∑x N (y |x)qX (x)
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Pretty good measurement is special case of Petz recovery

Take σ =
∑

x pX (x)|x〉〈x |X ⊗ σx and N = TrX . Then Petz recovery
map is the “pretty good instrument” for recovering system X back:

RP
σ,N (·) =

∑
x

|x〉〈x |X ⊗ pX (x)(σx)1/2σ−1/2(·)σ−1/2(σx)1/2

where σ =
∑

x pX (x)σx .

Pretty good measurement map results from tracing over quantum
system:

(·)→
∑
x

Tr
{
σ−1/2pX (x)σxσ−1/2(·)

}
|x〉〈x |X
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More on Petz recovery map

Linear, completely positive by inspection and trace preserving because

Tr{RP
σ,N (ω)} = Tr{σ1/2N †

(
(N (σ))−1/2ω(N (σ))−1/2

)
σ1/2}

= Tr{σN †
(

(N (σ))−1/2ω(N (σ))−1/2
)
}

= Tr{N (σ)(N (σ))−1/2ω(N (σ))−1/2}
= Tr{ω}

Perfectly recovers σ from N (σ) because

RP
σ,N (N (σ)) = σ1/2N †

(
(N (σ))−1/2N (σ)(N (σ))−1/2

)
σ1/2

= σ1/2N † (I )σ1/2

= σ
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Even more on Petz recovery map

Normalization [LW14]

For identity channel, the Petz recovery map is the identity map:

RP
σ,id = id

“If there’s no noise, then no need to recover”

Tensorial [LW14]

Given a tensor-product state and channel, then the Petz recovery map is a
tensor product of individual Petz recovery maps:

RP
σ1⊗σ2,N1⊗N2

= RP
σ1,N1

⊗RP
σ2,N2

“Individual action suffices for ‘pretty good’ recovery of individual states”
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And even more on Petz recovery map

Composition [LW14]

Given a composition of channels C ≡ N2 ◦ N1, then

RP
σ,N2◦N1

= RP
σ,N1
◦ RP

N1(σ),N2

“To recover ‘pretty well’ overall, recover ‘pretty well’ from the last noise
first and the first noise last”

Short proof

Follows from inspection of definitions:

RP
σ,N2◦N1

(·) = σ1/2C†
(

(C(σ))−1/2(·)(C(σ))−1/2
)
σ1/2

RP
σ,N1

= σ1/2N †1
(

(N1(σ))−1/2(·)(N1(σ))−1/2
)
σ1/2

RP
N1(σ),N2

= (N1(σ))1/2N †2
(

(C(σ))−1/2(·)(C(σ))−1/2
)

(N1(σ))1/2
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Petz recovery map for strong subadditivity

Recall that strong subadditivity is a special case of monotonicity of
relative entropy with ρ = ωABC , σ = ωAC ⊗ ωB , and N = TrA
Then N †(·) = (·)⊗ IA and Petz recovery map is

RP
C→AC (τC ) = ω

1/2
AC

(
ω
−1/2
C τCω

−1/2
C ⊗ IA

)
ω
1/2
AC

Interpretation: If system A is lost but H(B|C )ω = H(B|AC )ω, then
one can recover the full state on ABC by performing the Petz
recovery map on system C of ωBC , i.e.,

ωABC = RP
C→AC (ωBC )

Exact result [HJPW04]: H(B|C )ω = H(B|AC )ω iff ωABC is a
quantum Markov state, i.e., ∃ a decomposition of C , a distribution
pZ and sets {τ z

ACLz }, {τ zCRzB
} of states such that

ωABC =
⊕
z

pZ (z)τ zACLz ⊗ τ zCRzB
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Approximate case

Approximate case would be useful for applications

Approximate case for monotonicity of relative entropy

What can we say when D(ρ‖σ)− D(N (ρ)‖N (σ)) = ε ?

Does there exist a CPTP map R that recovers σ perfectly from N (σ)
while recovering ρ from N (ρ) approximately? [WL12]

Approximate case for strong subadditivity

What can we say when H(B|C )ω − H(B|AC )ω = ε ?

Is ωABC close to a quantum Markov state? [ILW08]

Is ωABC approximately recoverable from ωBC by performing a
recovery map on system C alone? [WL12]
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No-go result for closeness to q. Markov states [ILW08]

Define relative entropy to quantum Markov states as

∆(ωABC ) ≡ min
σABC∈MA−C−B

D(ωABC‖σABC )

It is known that there exist states ωABC for which

∆(ωABC )� I (A;B|C )ω

Very different from classical case. Conclusion is that closeness to
quantum Markov states does not characterize states with small
conditional mutual information

Other possibility is in terms of recoverability...
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Other measures of similarity for quantum states

Trace distance

Trace distance between ρ and σ is ‖ρ− σ‖1 where ‖A‖1 = Tr{
√
A†A}.

Has a one-shot operational interpretation as the bias in success probability
when distinguishing ρ and σ with an optimal quantum measurement.

Fidelity [Uhl76]

Fidelity between ρ and σ is F (ρ, σ) ≡ ‖√ρ√σ‖21. Has a one-shot
operational interpretation as the probability with which a purification of ρ
could pass a test for being a purification of σ.

Bures distance [Bur69]

Bures distance between ρ and σ is DB(ρ, σ) =
√

2(1−
√

F (ρ, σ).
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Conjectures for the approximate case

Conjecture for monotonicity of relative entropy [SBW14]

D(ρ‖σ)− D(N (ρ)‖N (σ)) ≥ − log F
(
ρ,RP

σ,N (N (ρ))
)

≥ D2
B

(
ρ,RP

σ,N (N (ρ))
)

Conjecture for strong subadditivity [BSW14]

H(B|C )ω − H(B|AC )ω ≥ − log F
(
ωABC ,RP

C→AC (ωBC )
)

≥ D2
B

(
ωABC ,RP

C→AC (ωBC )
)

Would follow from conjectures regarding Rényi relative entropy
differences and Rényi conditional mutual information (see related
conjectures in [WL12, Kim13, Zha14])
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Breakthrough result of [FR14]

Remainder term for strong subadditivity [FR14]

∃ unitary channels UC and VAC such that

H(B|C )ω − H(B|AC )ω ≥ − log F
(
ωABC , (VAC ◦ RP

C→AC ◦ UC )(ωBC )
)

Nothing known about these unitaries! However, can conclude that
I (A;B|C ) is small iff ωABC is approximately recoverable from system C
alone after the loss of system A. Gives a good notion of approximate
quantum Markov chain...

Remainder term for monotonicity of relative entropy [BLW14]

∃ unitary channels U and V such that

D(ρ‖σ)− D(N (ρ)‖N (σ)) ≥ − log F
(
ρ, (V ◦ RP

σ,N ◦ U)(N (ρ))
)

Again, nothing known about U and V. Furthermore, unclear how this
“rotated Petz map” performs when recovering σ from N (σ)
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Implications of [FR14]

When quantum discord is nearly equal to zero [SW14]

(Unoptimized) quantum discord of ρAB defined as

I (A;B)ρ − I (X ;B)τ

where
τXB ≡

∑
x

|x〉〈x | ⊗ TrA{Λx
AρAB}

Then
I (A;B)ρ − I (X ;B)τ ≥ − log F (ρAB , EA(ρAB))

where EA is an entanglement breaking channel. Conclusion: discord is
nearly equal to zero iff ρAB is approximately recoverable after performing a
measurement on system A (equivalently, iff ρAB is an approximate fixed
point of an entanglement breaking channel)
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More implications of [FR14]

Approximate faithfulness of squashed entanglement [WL12, LW14]

Squashed entanglement of ρAB defined as

E sq(A;B)ρ ≡ 1
2 inf
ωABE

{I (A;B|E )ω | ρAB = TrE{ωABE}}

Then

E sq(A;B)ρ ≥
C

dim |B|4 ‖ρAB − SEP(A : B)‖41

where C is a constant. Proof idea is to use the rotated Petz recovery map
to extract several approximate copies of system A from E alone.
Randomly permuting these gives a k-extension of the original state and
one can approximate SEP with the set of k-extendible states.
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Even more implications of [FR14]

Approximate faithfulness of multipartite squashed-like entanglement

Can show a similar bound for the conditional entanglement of multipartite
information (squashed-like measure from [YHW08]). Conclusion: This
measure is faithful.

Multipartite discord

Multipartite discord of a multipartite state [PHH08] is nearly equal to zero
if and only if each system is approximately locally recoverable after
performing a measurement on each system.

(see [Wil14] for details)
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Refinement of the circle of equivalences [BLW14]

1. Strong subadditivity ⇒ 2. Concavity of conditional entropy

⇒
⇒

3. Monotonicity of relative entropy
    under partial trace

5. Monotonicity of
    relative entropy

4. Joint convexity of
    relative entropy

⇒ ⇒

Can show that the circle of equivalences still holds with remainder terms
given by Bures distance, e.g., the following implication is true:

D(ρ‖σ)− D(N (ρ)‖N (σ)) ≥ D2
B

(
ρ,RP

σ,N (N (ρ))
)

⇒ I (A;B|C )ω ≥ D2
B

(
ωABC ,RP

C→AC (ωBC )
)

and etc. Unknown if any single ineq. is true, so either all true or all false!
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Conclusions

The result of [FR14] already has a number of important implications
in quantum information theory. However, it would be ideal to have
the recovery map be the Petz recovery map alone (not a rotated Petz
map).

It seems that these refinements with Petz recovery should be true (at
least numerical evidence and intuition supports). If so, we would have
a strong refinement of the fundamental law of quantum information
theory, characterizing how well one could attempt to reverse an
irreversible process. We could also then say “the circle is now
complete.”

Furthermore, there will be important implications in a number of
fields, including quantum communication complexity, quantum
information theory, thermodynamics, condensed matter physics
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