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Main message

Entropy inequalities established in the 1970s are a mathematical
consequence of the postulates of quantum physics

They are helpful in determining the ultimate limits on many physical
processes (communication, thermodynamics, uncertainty relations)

Many of these entropy inequalities are equivalent to each other, so we
can say that together they constitute a fundamental law of quantum
information theory

There has been recent interest in refining these inequalities, trying to
understand how well one can attempt to reverse an irreversible
physical process

This talk discusses progress in this direction
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Background — entropies

Umegaki relative entropy [Ume62]

The quantum relative entropy is a measure of dissimilarity between two
quantum states. Defined for state ρ and positive semi-definite σ as

D(ρ‖σ) ≡ Tr{ρ[log ρ− log σ]}

whenever supp(ρ) ⊆ supp(σ) and +∞ otherwise

Physical interpretation with quantum Stein’s lemma [HP91, NO00]

Given are n quantum systems, all of which are prepared in either the state
ρ or σ. With a constraint of ε ∈ (0, 1) on the Type I error of
misidentifying ρ, then the optimal error exponent for the Type II error of
misidentifying σ is D(ρ‖σ).
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Background — entropies

Relative entropy as “mother” entropy

Many important entropies can be written in terms of relative entropy:

H(A)ρ ≡ −D(ρA‖IA) (entropy)

H(A|B)ρ ≡ −D(ρAB‖IA ⊗ ρB) (conditional entropy)

I (A;B)ρ ≡ D(ρAB‖ρA ⊗ ρB) (mutual information)

I (A;B|C )ρ ≡ D(ρABC‖ exp{log ρAC + log ρBC − log ρC}) (cond. MI)

Equivalences

H(A|B)ρ = H(AB)ρ − H(B)ρ

I (A;B)ρ = H(A)ρ + H(B)ρ − H(AB)ρ

I (A;B)ρ = H(B)ρ − H(B|A)ρ

I (A;B|C )ρ = H(AC )ρ + H(BC )ρ − H(ABC )ρ − H(C )ρ

I (A;B|C )ρ = H(B|C )ρ − H(B|AC )ρ
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Fundamental law of quantum information theory

Monotonicity of quantum relative entropy [Lin75, Uhl77]

Let ρ be a state, let σ be positive semi-definite, and let N be a quantum
channel. Then

D(ρ‖σ) ≥ D(N (ρ)‖N (σ))

“Distinguishability does not increase under a physical process”
Characterizes a fundamental irreversibility in any physical process

Proof approaches

Lieb concavity theorem [L73]

relative modular operator method (see, e.g., [NP04])

quantum Stein’s lemma [BS03]
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Strong subadditivity

Strong subadditivity [LR73]

Let ρABC be a tripartite quantum state. Then

I (A;B|C )ρ ≥ 0

Equivalent statements (by definition)

Entropy sum of two individual systems is larger than entropy sum of
their union and intersection:

H(AC )ρ + H(BC )ρ ≥ H(ABC )ρ + H(C )ρ

Conditional entropy does not decrease under the loss of system A:

H(B|C )ρ ≥ H(B|AC )ρ
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Equality conditions [Pet86, Pet88]

When does equality in monotonicity of relative entropy hold?

D(ρ‖σ) = D(N (ρ)‖N (σ)) iff ∃ a recovery map RP
σ,N such that

ρ = (RP
σ,N ◦ N )(ρ), σ = (RP

σ,N ◦ N )(σ)

This “Petz” recovery map has the following explicit form [HJPW04]:

RP
σ,N (ω) ≡ σ1/2N †

(
(N (σ))−1/2ω(N (σ))−1/2

)
σ1/2

Classical case: Distributions pX and qX and a channel N (y |x). Then
the Petz recovery map RP(x |y) is given by the Bayes theorem:

RP(x |y)qY (y) = N (y |x)qX (x)

where qY (y) ≡
∑

x N (y |x)qX (x)
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x N (y |x)qX (x)
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More on Petz recovery map

Linear, completely positive by inspection and trace non-increasing
because

Tr{RP
σ,N (ω)} = Tr{σ1/2N †

(
(N (σ))−1/2ω(N (σ))−1/2

)
σ1/2}

= Tr{σN †
(

(N (σ))−1/2ω(N (σ))−1/2
)
}

= Tr{N (σ)(N (σ))−1/2ω(N (σ))−1/2}
≤ Tr{ω}

For N (σ) positive definite, the map perfectly recovers σ from N (σ):

RP
σ,N (N (σ)) = σ1/2N †

(
(N (σ))−1/2N (σ)(N (σ))−1/2

)
σ1/2

= σ1/2N † (I )σ1/2

= σ
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Functoriality

Normalization [LW14]

For identity channel, the Petz recovery map is the identity map:
RP
σ,id = id. “If there’s no noise, then no need to recover”

Tensorial [LW14]

Given a tensor-product state and channel, then the Petz recovery map is a
tensor product: RP

σ1⊗σ2,N1⊗N2
= RP

σ1,N1
⊗RP

σ2,N2
. “Individual action

suffices for ‘pretty good’ recovery of individual states”

Composition [LW14]

Given N2 ◦ N1, then RP
σ,N2◦N1

= RP
σ,N1
◦ RP

N1(σ),N2
. “To recover ‘pretty

well’ overall, recover ‘pretty well’ from the last noise first and the first
noise last”

Mark M. Wilde (LSU) 9 / 23



Functoriality

Normalization [LW14]

For identity channel, the Petz recovery map is the identity map:
RP
σ,id = id. “If there’s no noise, then no need to recover”

Tensorial [LW14]

Given a tensor-product state and channel, then the Petz recovery map is a
tensor product: RP

σ1⊗σ2,N1⊗N2
= RP

σ1,N1
⊗RP

σ2,N2
. “Individual action

suffices for ‘pretty good’ recovery of individual states”

Composition [LW14]

Given N2 ◦ N1, then RP
σ,N2◦N1

= RP
σ,N1
◦ RP

N1(σ),N2
. “To recover ‘pretty

well’ overall, recover ‘pretty well’ from the last noise first and the first
noise last”

Mark M. Wilde (LSU) 9 / 23



Functoriality

Normalization [LW14]

For identity channel, the Petz recovery map is the identity map:
RP
σ,id = id. “If there’s no noise, then no need to recover”

Tensorial [LW14]

Given a tensor-product state and channel, then the Petz recovery map is a
tensor product: RP

σ1⊗σ2,N1⊗N2
= RP

σ1,N1
⊗RP

σ2,N2
. “Individual action

suffices for ‘pretty good’ recovery of individual states”

Composition [LW14]

Given N2 ◦ N1, then RP
σ,N2◦N1

= RP
σ,N1
◦ RP

N1(σ),N2
. “To recover ‘pretty

well’ overall, recover ‘pretty well’ from the last noise first and the first
noise last”

Mark M. Wilde (LSU) 9 / 23



Functoriality

Normalization [LW14]

For identity channel, the Petz recovery map is the identity map:
RP
σ,id = id. “If there’s no noise, then no need to recover”

Tensorial [LW14]

Given a tensor-product state and channel, then the Petz recovery map is a
tensor product: RP

σ1⊗σ2,N1⊗N2
= RP

σ1,N1
⊗RP

σ2,N2
. “Individual action

suffices for ‘pretty good’ recovery of individual states”

Composition [LW14]

Given N2 ◦ N1, then RP
σ,N2◦N1

= RP
σ,N1
◦ RP

N1(σ),N2
. “To recover ‘pretty

well’ overall, recover ‘pretty well’ from the last noise first and the first
noise last”

Mark M. Wilde (LSU) 9 / 23



Petz recovery map for strong subadditivity

Strong subadditivity is a special case of monotonicity of relative
entropy with ρ = ωABC , σ = ωAC ⊗ IB , and N = TrA

Then N †(·) = (·)⊗ IA and Petz recovery map is

RP
C→AC (τC ) = ω

1/2
AC

(
ω
−1/2
C τCω

−1/2
C ⊗ IA

)
ω
1/2
AC

Interpretation: If system A is lost but H(B|C )ω = H(B|AC )ω, then
one can recover the full state on ABC by performing the Petz
recovery map on system C of ωBC , i.e.,

ωABC = RP
C→AC (ωBC )
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Approximate case

Approximate case would be useful for applications

Approximate case for monotonicity of relative entropy

What can we say when D(ρ‖σ)− D(N (ρ)‖N (σ)) = ε ?

Does there exist a CPTP map R that recovers σ perfectly from N (σ)
while recovering ρ from N (ρ) approximately? [WL12]

Approximate case for strong subadditivity

What can we say when H(B|C )ω − H(B|AC )ω = ε ?

Is ωABC approximately recoverable from ωBC by performing a
recovery map on system C alone? [WL12]
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Other measures of similarity for quantum states

Trace distance

Trace distance between ρ and σ is ‖ρ− σ‖1 where ‖A‖1 = Tr{
√
A†A}.

Has a one-shot operational interpretation as the bias in success probability
when distinguishing ρ and σ with an optimal quantum measurement.

Fidelity [Uhl76]

Fidelity between ρ and σ is F (ρ, σ) ≡ ‖√ρ
√
σ‖21. Has a one-shot

operational interpretation as the probability with which a purification of ρ
could pass a test for being a purification of σ.

Bures distance [Bur69]

Bures distance between ρ and σ is DB(ρ, σ) =

√
2
(

1−
√
F (ρ, σ)

)
.
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Breakthrough result of [FR14]

Remainder term for strong subadditivity [FR14]

∃ unitary channels UC and VAC such that

H(B|C )ω − H(B|AC )ω ≥ − log F
(
ωABC , (VAC ◦ RP

C→AC ◦ UC )(ωBC )
)

Nothing known from [FR14] about these unitaries! However, can conclude
that I (A;B|C ) is small iff ωABC is approximately recoverable from system
C alone after the loss of system A.

Remainder term for monotonicity of relative entropy [BLW14]

∃ unitary channels U and V such that

D(ρ‖σ)− D(N (ρ)‖N (σ)) ≥ − log F
(
ρ, (V ◦ RP

σ,N ◦ U)(N (ρ))
)

Again, nothing known from [BLW14] about U and V.
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New result of [Wil15]

New Theorem: Let ρ and σ be such that supp(ρ) ⊆ supp(σ) and let
N be a quantum channel. Then the following inequality holds

D (ρ‖σ)− D (N (ρ)‖N (σ)) ≥ − log

[
sup
t∈R

F
(
ρ,RP,t

σ,N (N (ρ))
)]
,

where RP,t
σ,N is the following rotated Petz recovery map:

RP,t
σ,N (·) ≡

(
Uσ,t ◦ RP

σ,N ◦ UN (σ),−t

)
(·) ,

RP
σ,N is the Petz recovery map, and Uσ,t and UN (σ),−t are defined

from Uω,t (·) ≡ ωit (·)ω−it , with ω a positive semi-definite operator.

Two tools for proof: Rényi generalization of a relative entropy
difference and the Hadamard three-line theorem
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Two tools for proof: Rényi generalization of a relative entropy
difference and the Hadamard three-line theorem

Mark M. Wilde (LSU) 14 / 23



New result of [Wil15]

New Theorem: Let ρ and σ be such that supp(ρ) ⊆ supp(σ) and let
N be a quantum channel. Then the following inequality holds

D (ρ‖σ)− D (N (ρ)‖N (σ)) ≥ − log

[
sup
t∈R

F
(
ρ,RP,t

σ,N (N (ρ))
)]
,

where RP,t
σ,N is the following rotated Petz recovery map:

RP,t
σ,N (·) ≡

(
Uσ,t ◦ RP

σ,N ◦ UN (σ),−t

)
(·) ,

RP
σ,N is the Petz recovery map, and Uσ,t and UN (σ),−t are defined

from Uω,t (·) ≡ ωit (·)ω−it , with ω a positive semi-definite operator.
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Rényi generalizations of a relative entropy difference

Definition from [BSW14, SBW14]

∆̃α (ρ, σ,N ) ≡ 2

α′
log
∥∥∥(N (ρ)−α

′/2N (σ)α
′/2 ⊗ IE

)
Uσ−α

′/2ρ1/2
∥∥∥
2α
,

where α ∈ (0, 1) ∪ (1,∞), α′ ≡ (α− 1)/α, and US→BE is an isometric
extension of N .

Important properties

lim
α→1

∆̃α (ρ, σ,N ) = D (ρ‖σ)− D (N (ρ) ‖N (σ)) .

∆̃1/2 (ρ, σ,N ) = − log F
(
ρ,RP

σ,N (N (ρ))
)
.
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Hadamard three-line theorem

Let S ≡ {z ∈ C : 0 ≤ Re {z} ≤ 1} , and let L (H) be the space of
bounded linear operators acting on a Hilbert space H. Let
G : S → L (H) be a bounded map that is holomorphic on the interior
of S and continuous on the boundary. Let θ ∈ (0, 1) and define pθ by

1

pθ
=

1− θ
p0

+
θ

p1
,

where p0, p1 ∈ [1,∞]. For k = 0, 1 define

Mk = sup
t∈R
‖G (k + it)‖pk .

Then
‖G (θ)‖pθ ≤ M1−θ

0 Mθ
1 .
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‖G (k + it)‖pk .

Then
‖G (θ)‖pθ ≤ M1−θ

0 Mθ
1 .
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Three (or so) line proof

Pick G (z) ≡
(

[N (ρ)]z/2 [N (σ)]−z/2 ⊗ IE

)
Uσz/2ρ1/2,

p0 = 2, p1 = 1, θ ∈ (0, 1) ⇒ pθ =
2

1 + θ

M0 = sup
t∈R

∥∥∥(N (ρ)it/2N (σ)−it/2 ⊗ IE

)
Uσitρ1/2

∥∥∥
2
≤
∥∥∥ρ1/2∥∥∥

2
= 1,

M1 = sup
t∈R
‖G (1 + it)‖1 =

[
sup
t∈R

F
(
ρ,RP,t

σ,N (N (ρ))
)]1/2

.

Apply the three-line theorem to conclude that

‖G (θ)‖2/(1+θ) ≤
[

sup
t∈R

F
(
ρ,RP,t

σ,N (N (ρ))
)]θ/2

.

Take a negative logarithm and the limit as θ ↘ 0 to conclude.
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SSA refinement as a special case

Let ρABC be a density operator acting on a finite-dimensional Hilbert
space HA ⊗HB ⊗HC . Then the following inequality holds

I (A;B|C )ρ ≥ − log

[
sup
t∈R

F
(
ρABC ,RP,t

C→AC (ρBC )
)]
,

where RP,t
C→AC is the following rotated Petz recovery map:

RP,t
C→AC (·) ≡

(
UρAC ,t ◦ R

P
C→AC ◦ UρC ,−t

)
(·) ,

the Petz recovery map RP
C→AC is defined as

RP
C→AC (·) ≡ ρ1/2AC

[
ρ
−1/2
C (·) ρ−1/2C ⊗ IA

]
ρ
1/2
AC ,

and the partial isometric maps UρAC ,t and UρC ,−t are defined as before.
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Conclusions

The result of [FR14] already had a number of important implications
in quantum information theory.

The new result in [Wil15] applies to relative entropy differences, has a
brief proof, and improves our understanding of the input and output
unitaries (but see [SFR15] for the special case of SSA)

By building on [SFR15, Wil15], we can now generalize these results:
there is a universal recovery map which depends only on σ and N and
has the form [SRWW15]:

X →
∫
µ(dt) RP,t

σ,N (X )

for some probability measure µ.

It is still conjectured that the recovery map can be the Petz recovery
map alone (not a rotated Petz map).
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