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Overview

Review Winter's measurement compression protocol 

Introduce a new variation of the protocol 

Review classical data compression with QSI

Introduce measurement compression with QSI

Outline some applications of MC-QSI



  

POVMs
Recall:

Quantum state is a positive, unit trace operator ρ

Positive operator-valued measure is a collection Λ = {Λ
x
} such that

Probability of getting outcome x when performing Λ on ρ is



  

Decomposing POVMs
Just as density operators can represent noisy quantum states,

so can POVMs represent noisy measurements...

Consider decomposing Λ as a random selection of a
measurement according to M combined
with a noisy post-processing p

X|W
(x|w):



  

What are the communication costs of 
simulating quantum measurements?

Example. Consider the following POVM:

This measurement decomposes as a random choice of Pauli X or Z

Protocol:



  

Another Example: Pentagon States
Example. Take a slice of the Bloch sphere that includes its center.

Consider 5 states that form a pentagon on the slice.
With appropriate weightings, these sum to the identity and form a POVM

Measurement decomposes as a random choice of 3-outcome measurements:

Simulate it with common randomness and classical communication

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050



  

Measurement Compression

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050



  

Ideal Information Processing Task
for Measurement Compression

Go to the IID setting:

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050



  

Actual Information Processing Task
for Measurement Compression

Use common randomness, a collective measurement,
and classical communication to simulate original measurement

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050



  

Faithful Simulation
A measurement simulation is faithful if its action on an IID state is

indistinguishable from the true measurement:

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050



  

Measurement Compression Theorem

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050

This holds for a “feedback” simulation in which
Alice also gets the output of the simulated measurement.

Groenewold's information gain (1971)

Shannon entropy



  

Measurement Compression Region

Notable rate pairs correspond to measurement compression
and Shannon compression (also Shannon compression combined with c. comm. to comm. rand.)

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050



  

Achievability

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050

Resource inequality for measurement compression:

Consider POVM Λ and state ρ leads to the following ensemble:

Can think that the goal is to “steer” the reference to be as above

How to do this approximately?

Do this with 



  

Achievability (Ctd.)

Andreas Winter. “Extrinsic” and “Intrinsic” Data in Quantum Measurements. arXiv:quant-ph/0109050

Exploit the Ahlswede-Winter Operator Chernoff bound
to guarantee that

This first condition is helpful in constructing a POVM for each m

This second condition is helpful in proving that the simulation is faithful

Select |L||M| codewords xn(l,m) according to p
Xn(xn) where 



  

Single-Letter Converse

Happens more often in QIT when resources are hybrid
(quantum and classical)

Main steps are just to think about the most general protocol
for this task and exploit quantum data processing inequality

Single-letter converse → the rates in the theorem are optimal

       R ≥ I(X;R)
R + S ≥ H(X)



  

Non-feedback Measurement 
Compression

Wilde, Hayden, Buscemi, and Hsieh (2012).



  

Nonfeedback Measurement Compression

It would then be possible to simulate {Mw} first,
followed by Bob locally simulating X from W

Is there a benefit in doing so?

Suppose that POVM {Λ} has a decomposition as

Wilde, Hayden, Buscemi, and Hsieh (2012).



  

Non-feedback Measurement 
Compression

Simulation is such that Alice does not require measurement output

Wilde, Hayden, Buscemi, and Hsieh (2012).



  

Nonfeedback Measurement Compression
Achievability follows by employing a variation of
Winter's measurement compression protocol:

No need for as much common randomness consumption
because Bob simulates p

X|W
(x|w) locally

Total rate of common randomness consumption
is then I(W ; X | R)

for a total classical cost of I(W ; XR)

Single-letter converse follows from a technique
similar to that of Paul Cuff (arXiv:0805.0065)

adapted to the quantum case



  

Nonfeedback Measurement Compression

Total cost can be lower



  

Nonfeedback Measurement Compression

Example plot of trade-off improvement:

Charles H. Bennett, Igor Devetak, Aram W. Harrow, Peter W. Shor and Andreas Winter. 0912.5537



  

Classical Data Compression
with Quantum Side Information

Devetak and Winter. arXiv:quant-ph/0209029



  

Classical Data Compression
with Quantum Side Information

Suppose that an information source generates
a classical sequence xn and quantum state ρ

xn

It gives the classical sequence to Alice and the
quantum state to Bob

Question: How much classical communication
is needed for Bob to recover xn?

Consider an ensemble of the following form:

Devetak and Winter. arXiv:quant-ph/0209029

Could just Shannon compress xn, but we can do better with QSI...



  

Ideal Protocol for CDC-QSI

In the ideal protocol, Alice just sends the classical sequence to Bob.
Devetak and Winter. arXiv:quant-ph/0209029



  

Actual Protocol for CDC-QSI

1) Alice hashes the classical sequence and sends Bob the hash

2) Bob performs a “gentle” quantum measurement conditional
on the hash value to recover xn



  

CDC-QSI Theorem

Alice needs to send the difference n[H(X) – I(X;B)] = nH(X|B)

There are nH(X) bits needed to describe the classical sequence xn

Intuition:

Bob can recover nI(X;B) bits about xn by measuring his state ρxn

Devetak and Winter. arXiv:quant-ph/0209029



  

Achievability

Wilde, Hayden, Buscemi, Hsieh (2012)

Resource inequality for CDC-QSI:

New proof strategy exactly like classical Slepian-Wolf protocol

Before communicating, Alice throws the typical sequences
into random bins. After doing so, this establishes a code
and our assumption is that Bob knows the assignments.

What's different: Bob receives hash from Alice, and scans over all
of the quantum states consistent with the hash value.

He performs sequential binary projective measurements
asking, “Does my quantum state correspond to the mth

sequence consistent with the hash?”



  

Single-Letter Converse

Main steps are just to think about the most general protocol
for this task and exploit quantum data processing inequality



  

Measurement Compression
with Quantum Side Information

Wilde, Hayden, Buscemi, and Hsieh (2012).



  

Ideal MC-QSI Protocol

Alice and Bob share many copies of state ρAB 

Goal is for Alice and Bob to simulate ideal measurement
and for Bob's state not to be disturbed



  

Actual MC-QSI Protocol
Use common randomness, an Alice collective measurement,
classical communication, and a Bob collective measurement

to simulate original measurement

Wilde, Hayden, Buscemi, and Hsieh (2012).



  

Achievability
Resource inequality for CDC-QSI:

Proof strategy combines ideas from MC and CDC-QSI
(though not possible to concatenate protocols with resource calculus)

Choose an MC protocol randomly as before. Choose a
hash function randomly as well. Can show there exists

a choice of these that works well. 

Operation: Alice performs simulation measurement,
hashes the outcome, and sends it to Bob.

Bob receives hash from Alice, and scans over all
of the post-measurement states consistent with the hash value.

He performs sequential binary projective measurements
asking, “Does my quantum state correspond to the mth

measurement outcome consistent with the hash?”



  

MC-QSI Theorem

This holds for a “feedback” simulation in which
Alice also gets the output of the simulated measurement.

Wilde, Hayden, Buscemi, and Hsieh (2012).



  

Single-Letter Converse

Single-letter converse → the rates in the theorem are optimal

Main steps are just to think about the most general protocol
for this task and exploit quantum data processing inequality

       R ≥ I(X;R|B)
R + S ≥ H(X|B)

Also, we require that the protocol causes only a
negligible disturbance to Bob's state

This is for feedback case in which Alice gets a copy of measurement outcome



  

Applications of MC-QSI

1) Classically assisted state redistribution

2) Quantum reverse Shannon theorem for a quantum instrument

3) Local purity distillation



  

Classically assisted state redistribution

Most general protocol for entanglement distillation with the
help of classical and quantum communication



  

Perform MC-QSI

Classically-assisted state redistribution

Begin with state that has purification

Requires rate of classical communication

Then perform Quantum State Redistribution
conditional on classical information



  

Classically-assisted state redistribution



  

Quantum Reverse Shannon Theorem
for a Quantum Instrument

We have a reverse Shannon theorem for a quantum channel

We have a reverse Shannon theorem for a POVM

What about for a quantum instrument with classical and quantum outputs?

Protocol is to perform measurement compression followed by FQRS:

Reverse Shannon theorem when QSI is available:



  

Local Purity Distillation
Paradigm: Alice and Bob share a state 
Their goal is to distill local pure states

using classical communication and local unitaries

By using MC-QSI, we have the following improvement to Krovi-Devetak 0705.4089

Lower classical comm. cost



  

Conclusion and Current Work

Measurement compression gives a powerful
operational way for understanding quantum measurement

We have extended Winter's original protocol in two ways:

1) Nonfeedback measurement compression
2) Measurement compression with QSI

In progress:

    Figuring out nonfeedback measurement compression w/ QSI

Good open question:

    Prove measurement compression theorem so that protocol
    does not depend on structure of input state


