Quantum Computation & Quantum Error Correction

Mark M. Wilde

McGill University

LSU Center for Computation and Technology Seminar, Baton Rouge, Louisiana, April 5, 2012

The Quantum Revolution

Solvay Conference in Brussels 1927

Quantum Theory developed from 1900-1925

Ideas such as indeterminism, Heisenberg uncertainty, superposition, interference, and entanglement are part of quantum theory

The Computing Revolution

In 1936, Alan Turing revolutionized the theory of computation

with a breakthrough paper:

230

A. M. TURING

[Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.-Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable *numbers*.

The Church-Turing Thesis

A computing problem can be solved on *any* computer that we could hope to build, if and only if it can be solved on an abstract Turing machine.

Turing machine consists of

- a finite set of states
- An infinite tape for reading and writing with a moving head
- A transition function specifying next state in terms of current one and symbol pointed to by the head.

Variation: Complexity-theoretic Church-Turing thesis: A probabilistic Turing machine can efficiently simulate any realistic model of computation.

The Quantum Computing Revolution

Feynman

Grover

Shor

Deutsch

Kitaev

"The Second Quantum Revolution" or "The Second Computing Revolution"

"Putting quantum weirdness to use"

Ideas such as quantum Fourier transform, amplitude amplification, phase estimation, and quantum parallelism are important here

Revising the Church-Turing Thesis

Strong quantum Church-Turing thesis: A quantum Turing machine can efficiently simulate any realistic model of computation.

It appears that classical physics is *not powerful enough* to simulate quantum physics

Exponential slowdown when simulating quantum physics

What are quantum computers good for?

• Shor's algorithm (1994) breaks the **RSA** public key cryptography algorithm in polynomial time.

 Grover's algorithm (1997) gives a quadratic speedup for unstructured search.

• Simulation of quantum processes such as chemical reactions and molecular dynamics perhaps has the most potential.

•Brief review of quantum computation

•Quantum error correction

Quantum Cheat Sheet

- I. Quantum states are represented by rays in Hilbert space.
- II. States evolve according to unitary operators.
- III. The states of composite systems are rays in a **tensor-product Hilbert space**.
- IV. Immediate repetition of a measurement gives the same outcome.
- IV a? **Born rule**: Probability of an outcome given by square of a probability amplitude

Note: Born forgot to square the amplitude in original version, did so in a footnote, and later won the Nobel Prize for the footnote

Quantum States

Simplest quantum system is a **qubit** (quantum bit).

A qubit state can be classical ("here or there"):

$$|0\rangle \equiv \left[\begin{array}{c} 1\\ 0 \end{array} \right] \qquad |1\rangle \equiv \left[\begin{array}{c} 0\\ 1 \end{array} \right]$$

Any superposition (*"here and there"*) of these classical states is a possible quantum state:

$$lpha|0
angle+eta|1
angle=\left[egin{array}{c}lpha\eta\end{array}
ight]$$
 where $|lpha|^2+|eta|^2=1$

Reading out information

Can "read out" information by performing quantum measurements

For classical states $|0\rangle$ or $|1\rangle$, a "**computational-basis**" measurement gives a *definite outcome* and *state is unchanged*.

For superposed state $\left. lpha | 0
ight
angle + eta | 1
ight
angle$

Such a measurement gives outcome $|0
angle\,$ with probability $|lpha|^2$

or outcome |1
angle with probability $|eta|^2$

Typical QIP implementation of measurement:

How is quantum different from classical?

Superposed state: $\alpha |0\rangle + \beta |1\rangle$ Mixture: $|0\rangle$ with probability $|\alpha|^2$ $|1\rangle$ with probability $|\beta|^2$

Is superposed state physically different from mixture? Yes!

Can see this by performing a different measurement:

Entanglement

Suppose Alice and Bob are in distant labs and each possess a qubit

States of two qubits might be $\ |0
angle^A\otimes |0
angle^B$ or $\ |1
angle^A\otimes |1
angle^B$

But by the superposition principle, the state could also be $\frac{1}{\sqrt{2}}(|0\rangle^A \otimes |0\rangle^B + |1\rangle^A \otimes |1\rangle^B)$

This state is "entangled" because it cannot be written as $|\psi
angle^A\otimes|\phi
angle^B$

Entanglement confounded Schrodinger:

"I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought."

Circuit Model of Quantum Computing

Example quantum algorithm:

Quantum circuit model is universal for quantum computation

1) Initialize qubits

2) They **interact** by some controlled unitary operations

3) Read out by performing measurements at the end

Other models of quantum computation exist but circuit model is most prevalent

Quantum Information and Noise Alice Eve

Environment **Eve** correlates with **Alice**'s qubits and destroys the fragile nature of a quantum state

This can happen at any stage of computation (preparation, evolution, or read-out)

Quantum Error Correction

Quantum error correction and its variants appear to be the only viable way to fight decoherence in a quantum computer

Main idea of quantum error correction:

Shor, PRA 52, pp. R2493-R2496 (1995).

Example Bit-Flip Code

Would like to protect a single qubit against classical bit flip noise: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

Encode it with the help of other ancilla qubits:

State then transforms to

$(\alpha|0\rangle + \beta|1\rangle)|0\rangle|0\rangle \rightarrow \alpha|0\rangle|0\rangle|0\rangle + \beta|1\rangle|1\rangle|1\rangle$

Quantum data encoded into the correlations between qubits. More difficult for local bit-flip noise to destroy this quantum data

Example Phase-Flip Code

Would like to protect a single qubit against quantum phase-flip noise:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Encode it with the help of other ancilla qubits and change basis:

State then transforms to

 $(\alpha|0\rangle + \beta|1\rangle)|0\rangle|0\rangle \rightarrow \alpha|+\rangle|+\rangle|+\rangle + \beta|-\rangle|-\rangle|-\rangle$

More difficult for local phase-flip noise to destroy this quantum data

Shor Code

Shor's idea: To protect against arbitrary bit-flip and phase-flip noise, Concatenate the two schemes!

Preskill's interpretation: If you try to "read one page of this 9-page quantum book, then you won't get any information"!

Which quantum errors can we correct?

A quantum error-correcting code can only correct certain errors.

Which ones?

Let $|0\rangle$ and $|1\rangle$ be the logical 0 and 1 states for a logical qubit in a QECC

Then it can correct an error set $\{E_a\}$ if these states remain **distinguishable** under any two different errors from the set

 $E_a|0\rangle \perp E_b|1\rangle$

(these conditions are the same as the classical conditions)

For QECC, we also require that the dual basis states remain distinguishable

$$E_a(|0\rangle + |1\rangle) \perp E_b(|0\rangle - |1\rangle)$$

How to build a fault-tolerant quantum computer

Need to make sure that procedures are robust to failure while doing

- 1) Preparation
- 2) Evolution
- 3) Read-out
- 4) Even when doing nothing!

Then continue **concatenating codes** like we did for Shor code! Replace every circuit operation with a **fault-tolerant version** and perform **error correction** after every operation

How to build a fault-tolerant quantum computer

If reduction in error is from p to cp^2 ,

then there is some **accuracy threshold** for quantum computing if p < 1/c

Constant *c* is very important in practice---depends on quantum code chosen

For any accuracy $\epsilon > 0$, we require a quantum circuit size that is only polylogarithmic in inverse accuracy:

$$O\left(\operatorname{poly}\left(\log\left(\frac{1}{c\epsilon}\right)\right)\right)$$

Why? Under concatenation, failure probability is **doubly exponentially small** in number of levels of concatenation, whereas circuit size only increases **exponentially**

Accuracy:
$$\epsilon = c^{-1} (cp)^{2^a}$$

Circuit size: d^a

Estimate on the Quantum Accuracy Threshold

(Though, for some quantum algorithms, may only require 2 or 3 levels of concatenation) Aliferis, Gottesman, Preskill. arXiv:quant-ph/0703264

Quantum Error Correction for Communication

Quantum Convolutional Codes

H. Ollivier and J.-P. Tillich, "Description of a quantum convolutional code," PRL (2003)

Quantum Turbo Codes

A quantum turbo code consists of two interleaved and serially concatenated quantum convolutional encoders

Performance **appears to be good** for q. comm. from the results of numerical simulations

D. Poulin, J.-P. Tillich, and H. Ollivier, "Quantum serial turbo-codes," *IEEE Transactions on Information Theory*, vol. 55, no. 6, pp. 2776–2798, June 2009. M. M. Wilde and M.-H. Hsieh, "Entanglement boosts quantum turbo codes." arXiv:1010.1256

Simulations

Selected an encoder randomly

with one information qubit, two ancillas, and three memory qubits

Non-catastrophic and quasi-recursive

Distance spectrum:

 $11x^5 + 47x^6 + 253x^7 + 1187x^8 + 6024x^9 + 30529x^{10} + 153051x^{11} + 771650x^{12} \\$

Serial concatenation with itself gives a rate 1/9 quantum turbo code

Replacing both ancillas with ebits gives EA encoder

Non-catastrophic and recursive

Distance spectrum improves dramatically:

 $2x^9 + x^{10} + 5x^{11} + 8x^{12}$

Serial concatenation with itself gives a rate 1/9 quantum turbo code with 8/9 entanglement consumption rate

M. M. Wilde and M.-H. Hsieh, "Entanglement boosts quantum turbo codes," arXiv:1010.1256.

Compare with the Hashing Bounds

Bennett *et al.*, "Entanglement-assisted classical capacity," (2002) Devetak *et al.*, "Resource Framework for Quantum Shannon Theory (2005)

Unassisted Turbo Code

M. M. Wilde and M.-H. Hsieh, "Entanglement boosts quantum turbo codes," arXiv:1010.1256.

Fully Assisted Turbo Code

M. M. Wilde and M.-H. Hsieh, "Entanglement boosts quantum turbo codes," arXiv:1010.1256.

Quantum Polar Codes

Polar codes were invented by Arikan for classical error correction, and we have now figured out how to exploit these ideas for quantum error correction

> **Result**: The first class of explicit quantum codes that provably achieve the hashing bound and have an efficient encoding and decoding

The scheme relies on *channel polarization*: A recursive encoding induces a set of synthesized channels of which a fraction are **perfect** and the other fraction are **useless**

Many theoretical papers on this topic, now starting numerical work

Erdal Arikan, "Channel polarization: A method for constructing capacity-achieving codes ...," arXiv:0807.3917.
M. M. Wilde and S. Guha, "Polar codes for classical-quantum channels," arXiv:1109.2591.
M. M. Wilde and S. Guha, "Polar codes for degradable quantum channels," arXiv:1109.5346.
M. M. Wilde and J. M. Renes, "Quantum polar codes for arbitrary channels," arXiv:1201.2906.
S. Guha and M. M. Wilde, "Polar coding to achieve the Holevo capacity of a pure-loss optical channel," arXiv:1202.0533.
M. M. Wilde and J. M. Renes, "Polar codes for private classical communication," arXiv:1203.5794.

Preliminary Simulation Results for Quantum Polar Codes

Erasure probability – 0.2

Depolarizing probability – 0.063

Block sizes of codes are 128, 1024, 4096

Results are preliminary...

Z. Dutton, S. Guha, and M. M. Wilde, In preparation (2012)

Future Directions

The goal of the second quantum revolution is to narrow down all scenarios in which we have a "quantum supremacy" and to realize this supremacy

Much remains to be understood

Much work regarding quantum code performance is numerical in order to make statements to experimentalists regarding device design