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Overview
Sequential decoding for a pure-state classical-quantum channel

Sequential decoding for a pure-loss bosonic channel

Sequential decoding in quantum reading

Further applications of sequential decoding



  

Simple Model for a Quantum Channel

Upon inputting classical variable x,
the channel prepares a pure quantum state at the output

A pure-state, classical-quantum channel:

For example, channel could be

Inputting codewords 00 and 11 and performing
collective measurement at receiver would outperform

inputting 0 and 1 and doing “single-symbol” measurements



  

Classical Codes for a Quantum Channel 

Decoder performs a collective measurement to determine 
transmitted classical signal

Use the channel n times:

How to build the decoding measurement with optical devices?

Encoder just maps classical message m to a classical codeword:



  

Achievable Rates
Two measures of performance:

In Shannon theory, we demand that P
e
 → 0 as n → ∞ at a fixed rate R

(so that rate R becomes only performance measure)

1) The rate R of a code is equal to bits per channel use: 

2) The probability of error P
e
 is equal to

Define a rate R to be achievable if there exists
a sequence of codes of rate R such that P

e
 → 0 as n → ∞.



  

Capacity of a Pure-State CQ Channel
Definition: The capacity is the supremum of all achievable rates.

Theorem: The capacity of a pure-state CQ channel is equal to 

where

P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, W. Wootters. Phys. Rev. A 54 (1996)

NOTE: This is NOT the capacity for the most general definition
of a quantum channel as a Kraus map.

HJSWW96 proved the above theorem by employing the so-called
“square-root measurement”

We will show that sequential decoding works just as well...



  

Sequential Decoding

First consider sequential decoding for a classical channel.

1) Suppose the receiver obtains a sequence yn

as the output of an IID channel p(y|x)

Cover and Thomas. Elements of Information Theory.

A little more precise: The question above can be stated
more formally as “Is xn(m) jointly typical with yn?”

2) Sequential decoding has the receiver ask,
for every codeword xn(m),

“Is xn(m) a reasonable cause for yn?” 

3) Receiver declares the message to be m as
soon as the answer to the above question is “Yes!”



  

Quantum Sequential Decoding

Giovannetti, Lloyd, and Maccone. PRA 2012. arXiv:1012.0386,    Sen. arXiv:1109.0802

Receiver declares the message to be m as
soon as the answer to the above quantum question is “Yes!”

Ask, “Is it the mth codeword?”, by performing the measurement

Probability of correctly decoding message m:

where



  

Quantum Sequential Decoding (ctd.)

Sen. ArXiv:1109.0802.      Guha, Tan, Wilde. arXiv:1202.0518 

Analyze instead average error probability 

under the assumptions that

1) Alice chooses message m uniformly at random

2) Codewords xn(m) are selected IID according to p(x)
and independent of the message m to be sent

Can show that the above error is approximately equal to

where Π is the typical projector for the average state 



  

Key Tool: Noncommutative Union Bound

Should find widespread application in quantum info. theory

Holds for a subnormalized state ρ and projectors Π
1
, …, Π

N
:

Consider similarity with union bound:

P. Sen, “Achieving the Han-Kobayashi inner bound ...”, arXiv:1109.0802



  

Error Analysis

1) Probability that correct codeword does not “click”:

2) Probability that some other codeword “clicks”:

Upper bound this using the noncommutative union bound:

Analyze error probability:



  

Result: Entropy Rate is Achievable

has the following upper bound:

The error probability

As long as rate R ≈ H(ρ), conclude there exists
a particular sequence of codes with P

e
 → 0 as n → ∞  



  

Application to Pure-Loss Bosonic Channels

Pure-Loss Bosonic Channel
(models fiber optic or free space transmission)

(vacuum)

Weedbrook et al., Gaussian Quantum Information, Reviews of Modern Physics (2011).

Heisenberg input-output relation for channel:



  

Sending Classical Data over Bosonic Channels

Classical capacity of lossy bosonic channel is exactly

where η is transmissivity of channel,
N

S
 is the mean input photon number,
and g(x) = (x+1) log(x+1) – x log x
is the entropy of a thermal state

with photon number x

Can achieve this capacity by selecting
coherent states randomly according to a

complex, isotropic Gaussian prior with variance N
S

Giovannetti et al., Physical Review Letters 92, 027902 (2004)



  

Codebook for pure-loss bosonic channel

Giovannetti et al., Physical Review Letters 92, 027902 (2004)

Classical capacity result implies that it suffices
to consider pure-state CQ channel:

And choose codewords randomly according to

Codebook is then of the form:

(WLOG, set η = 1)

where



  

Sequential Decoding for pure-loss channel
Sequential decoding measurements are

Observing that

1) Displace the n-mode codeword state by

2) Perform a “vacuum-or-not” measurement:

3) If “NOT VAC,” displace back:

Guha, Tan, Wilde. arXiv:1202.0518 



  

Sequential Decoding for pure-loss channel

Result: Sequential decoding achieves the capacity
of the pure-loss channel

Guha, Tan, Wilde. arXiv:1202.0518 

Observation: This scheme also achieves the
private capacity of the pure-loss channel:

How? Pick coherent-state codewords

Put them into groups,

each labeled by m and consisting of codewords

To send message m, pick a codeword from mth group
uniformly at random and transmit



  

Quantum Reading

Idea: Use quantum light to improve performance
of reading of a digital memory

S. Pirandola, “Quantum reading of a classical digital memory,”
Physical Review Letters, vol. 106, p. 090504, March 2011

Model the information encoded
onto a DVD as beamsplitters

with certain reflectivity and phase 

In a DVD or CD, information is
encoded into “pits” etched

onto the disc.
(“pit” is 1 and “absence of pit” is 0) 



  

General Model for Quantum Reading

1) Irradiate memory cells with some quantum state of light
with mean photon number N

S 
(the same state for all cells)

2) Information encoded into memory cells as 

3) Perform a collective measurement to recover classical message m



  

Capacity of Quantum Reading

If mean photon number of transmitter is N
S

and we do not allow for retaining idler modes at the transmitter,
then the capacity of quantum reading is just

Follows from subadditivity of entropy and that a thermal state
of mean photon number N

S
 maximizes the entropy

If we allow for retaining idler modes, then the capacity is unknown



  

Achieving Capacity of Quantum Reading
How to achieve capacity of quantum reading?

1) Put transmitter in the state:

(Avg. photon number is N
S
)

2) For codewords, choose η
i
 = 1 and phases φ

i
 randomly

Avg. state of ensemble is then a dephased version of the above state:

Guha, Dutton, Nair, Shapiro, Yen. In preparation (2012)

Achieves capacity of g(N
S
) !

Though, how to implement strategy?



  

Sequential Decoding for Quantum Reading
Since we don't know how to implement the previous strategy,
analyze a strategy where transmitter retains an idler mode.

2) For codewords, again choose η
i
 = 1 and phases φ

i
 randomly

Guha, Tan, Wilde. arXiv:1202.0518

Achieves rate of g(N
S
) !

Don't know whether this is optimal, but we know how to implement receiver

1) Put transmitter in the state:

(Avg. photon number of
   one mode is N

S
)

Avg. state of ensemble is then a dephased version of the above state:



  

Sequential Decoding for Quantum Reading

We can now see sequential decoding strategy for the mth round:

2) Apply an unsqueezing operator [S(r)]-1 to every pair.

Guha, Tan, Wilde. arXiv:1202.0518

4) If “NOT VAC”, squeeze back and phase-shift back

Consider that phase-encoded light is a tensor product of the states

where P is a phase-shifter and S(r) is a two-mode squeezer

1) Phase shift the first mode of the ith pair by -θ
i
(m)

3) Perform a “vacuum-or-not” measurement:



  

Sequential Decoding in EA comm.

Use a two-mode squeezed state and displacement operators for encoding

Guha, Wilde. Unpublished Emails (2012)

Consider entanglement-assisted communication over a noiseless bosonic channel

(CV dense coding: Braunstein and Kimble 1999)

Sequential decoding works similarly as before
(inverse displace, unsqueeze, “VAC-OR-NOT”, resqueeze, displace)



  

Sequential Decoding in Multiple Access

Yen, Shapiro. PRA (2005).        Guha, Wilde. Unpublished Emails (2012)

Sequential decoding works by testing all pairs of codewords

Simple model of a “pure-interference” bosonic multiple access channel:

Sender 1

Sender 2

Receiver

Coherent-state inputs and lead to output

Can achieve capacity of “coherent-state MAC” in certain circumstances



  

Conclusion and Current Work

Quantum sequential decoding leads to a “practical” receiver
(“practical” in the sense that we can implement)

Polar codes might be helpful here (arXiv:1202.0533) 

It is impractical because it requires
an exponential number of measurements

Open question: How to reduce the number of measurements?

Could any of the ideas here be helpful for
communicating quantum data?


