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decoding method from

Thus, it remains open to determine if ™

Quatumn effects might play some unexpected role for the quantum interference channel and allows to
achievia_I»te region that is superior to the well-known Han-Kobayashi rate region.

Finally, teCould be that quantum simultaneous decoding is not necessary in order to achieve the"Han-
Kobayashi regiot~Jmfact, our first attempt at the proof of Theorem 12 was to gusntizg #1fé successive
RRE[59], by exploiting the coding techniques from Ref] 0, 1Z}+allored for classical
communication. But we found_@m-igsue with the technique in Ref. [53}¢Ven ferthe classical interference
channel because rate-splitting at the veqience of one receiver affeets the-other receiver’s decoding abilities.
jve decodipg-trategy can achieve the Han-Kobayashi rate

region.
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A Typical Sequences and Typical Subspaces

Consider a density operator p with the following spectral decomposition:
p=Y px(a)|a)(a|.
T
The weakly typical subspace is defined as the span of all vectors such that the sample entropy H(z") of
their classical label is close to the true entropy H (X) of the distribution px (z) [47, 68]:
T¥" = span {lz™) : |H(w") - H(X)| <46},

where

I (7 1 n

H((z") = —ﬁlog(pxn (™)),

H(X)= —pr (z)logpx (z).
The projector II7 ; onto the typical subspace of p is defined as

M= > k™),

zreTX™
where we have “overloaded” the symbol T " to refer also to the set of d-typical sequences:
T¥" ={z":|H (a") - H(X)| < 6}.
The three important properties of the typical projector are as follows:

Tr {II} 5p%"} > 1 — ¢,
Tr {H'pL,J} < 2n[H(X)+5],

2_n[H(X)+6]H;,6 < Hz,&”@nns,& < 2—n[H(X)_6]H;,5,

where the first property holds for arbitrary €, > 0 and sufficiently large n.
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Consider an ensemble {px (z),pz},cx Of states. Suppose that each state p, has the following spectral
decomposition:

pz =Y Pyix (Ul2) |ve) (vz| -

Consider a density operator p,» which is conditional on a classical sequence ™ = 21 - + - Tp,:
Prn =Pz, @ Pz, -

We define the weak conditionally typical slbspace as the span of vectors (conditional on the sequence z™)
such that the sample conditional entropy H (y™|z™) of their classical labels is close to the true conditional
entropy H (Y|X) of the distribution py|x (y|x) px (x) [47, 68]:

7" = span {|yf) : [H (u"e™) — H (Y|X)| < 6},
where

— 1

H(@y z™) = - log (pynlxn (y"|a:")) ,

H(Y|X)=- pr () anx (y|z) log py | x (yl|x) .
z y
The projector II,_.. s onto the weak conditionally typical subspace of p;~ is as follows:

Mpag= D, |95) (¥,

yreTy ="
where we have again overloaded the symbol TEY "12" to refer to the set of weak conditionally typical sequences:
T, = {y*: |H "e™) - H (Y|X)| < 6} .
The three important properties of the weak conditionally typical projector are as follows:
]EX" {’Ilr {prn,épX"}} 2 1- €,
rIlr{Hp . 6} < 2n[H(Y|X)+6],
2_n[H(Y|X)+6] szn,é < szn,é Pzn Hp,n,é < 2—n[H(Y|X)—6] Hp:n,éa

where the first property holds for arbitrary ¢, > 0 and sufficiently large n, and the expectation is with
respect to the distribution px~ (™).

B Gentle Operator Lemma

Lemma 15 (Gentle Operator Lemma for Ensembles [69, 48, 68]). Given an ensemble {px (z), p} with
ezpected density operator p = >, px (&) pz, suppose that the operator A such that I > A > 0 succeeds with
high probability on the state p:

Tr{Ap} > 1—c¢.

Then the subnormalized state v/Apy\/A is close in expected trace distance to the original state pg:

B {[VEpevE-oe] } 4242
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andR, = 1 log, (M) & (where § > 0) satisfy

~n
Rl SI(X)B),)7

where the Holevo information ginw{ities are with Tesgect 1o~ classical-quanttm state of the form

v Yy
XYB = pr ny k] (v|* ® pﬁy. (2)
T,y

Then there ezist two POVMs 4K} and {I‘g,) Gcting in suvsegsive order suchNthat the expectation of the
average probability of coppett detectio arbitrarily close to one:

1 / e ./
| Yyn m Z T’r{ F‘E;lz) Ale"(l),Y"(m) Al Fg,)} 2 1 — €.
i l,m

ot

5.2 Quantum Simultaneous Decoding

Another approach to achieve the capacity of the multiple access channel is for the receiver to use a simul-
taneous decoder (sometimes referred to as a jointly typical decoder in the IID setting), which decodes the
messages of all senders at the same time rather than in succession [13, 20]. On the one hand, simultaneous
decoding is more complex than successive decoding because it considers all tuples of messages, but on the
other hand, it is more powerful than a successive decoding strategy because it can decode at any rates
provided that the rates are in the capacity region.

Note that the receiver can exploit a simultaneous decoder to achieve any point in the capacity region of a
multiple access channel without invoking time-sharing. With such a strategy and for two senders, there are
four different types of errors that can occur—one of these we can bound with a standard typicality argument
and the other three correspond to the bounds on the capacity region of the channel. This strategy is our
approach below, and we can prove that a quantum simultaneous decoder exists for multiple access channels
with two classical inputs and one quantum output. Though, for a three-sender quantum multiple access
channel, we are only able to prove that a quantum simultaneous decoder exists in the special case where the
averaged output states commute. Thus, we leave the general case stated as a conjecture.

5.2.1 Two-Sender Quantum Simultaneous Decoding

This section contains the proof of the two-sender quantum simultaneous decoder. We should mention that
Sen independently arrived at this result by a different technique [58].

Theorem 2 (Two-Sender Quantum Simultaneous Decoding). Let z,y — pzy be a ccq channel from two
senders to a single receiver. Let px (z) and py (y) be respective input distributions that each sender uses
to create random codebooks of the form {X™ (D},cpy, . ) and {Y™ (M)}, ey, ar)- Suppose that the rates

Ry = llog, (L) + & and Ry = log, (M) + 8 (where § > 0) satisfy the following inequalities:

R, < I(X;BlY), 3)
Ry <I(Y;B|X),, (4)
Ry + Ry <I(XY;B),, (5)

where the entropies are with respect to a state of the form in (2). Then there exisis a simultaneous decoding
POVM {Ay .} such that the expectation of the average probability of error is bounded above by € for alle > 0
and sufficiently large n.



Proof. Suppose that the channel is a ceq channel of the form z,y = pzy and that the two senders have
independent distributions px (z) and py (y). These distributions induce the following averaged output states:

pz =Y _0y(Y) Pay, (6)
py =D _px(T) prys (7)
p=)_ px(@)py () Pay- (8)

Codeword Selection. Senders 1 and 2 choose codewords {X™ (!)}cqq,..,1) and Y™ (M) e, M3
independently and randomly according to the distributions pxn (z™) and py= (¥™).

POVM Construction. Let IT7 ; be the typical projector for the tensor power state p®" defined by (8).
Let szn, s be the conditionally typical projector for the tensor product state py» defined by (7) for n uses
of the channel. Let II7 _ ; be the conditionally typical projector for the tensor product state pgn defined
by (6) for n uses of the channel. Let H;LG,yn, s be the conditionally typical projector for the tensor product
state pyn 4~ defined as the output of the n channels when codewords 2™ and y™ are input. (We are using the
“weak” definitions of these projectors as defined in the appendix.) In what follows, we make the following
abbreviations:

—1n
I=1I7,,
— 1"
Hyn = prn,67
— 1"
Men =105, 5,
— 1"
H1"1y" = szn,y'n KN

The detection POVM {A;»} has the following form:

-1 -
b

Z H;’,m’ ;,m Z H;’,m/ ’ (9)

Um’ om!

(ST

Al,m

1
II;,

= ay Hxn nim) Hxnay IL
m =g DX T

(Observe that the operator IT}  is a positive ‘operator and thus {Aim} is a valid POVM.)
Error Analysis. The average error probability of the code has the following form:

B 1
P. =777 gn:Tr {U = M) pxn@)yn(m) } - (10)

We instead analyze the expectation of the average error probability, where the expectation is with respect
to the random choice of code:

o 1
Exny» {Pe} =Exry= | 727 zZ Tr {(I — At;m) Pxn(1), " (m) }

1
= I3 > Exnyn {Te{(I = Aym) PXA(D),Yn(m)}} -
Im

Due to the symmetry of the code construction (the fact that the expectation Ex» y= {Tr {I - Aim) Px~ @), ¥7(m) 1}
is independent of the particular message pair (I,m)), it suffices to analyze the expectation of the average
error probability for the first message pair (1,1):

Exnyn {Be} = Exryn {Tr {(I — A11) pxn() vy} } -



[

We now begin our error analysis. We first bound this error probability from above as

EXn’Yn {ﬁe} < ]EXn,Yn {’I‘r {(I — Al,l) HYﬂ(l) Pxn(1),Yn(1) Hyn(l)}}

+Exn e {[Tyn) px=,v~@) Tyna) = pxn)yaoll } (11)
< Exny~ {Tr {(I = A11) Oynqy pxr)yn) Oyn}} + 25, (12)

where the first inequality follows from the inequality
Tr{Ap} < Tr{Ac} +p—o0l;, (13)

which holds for all p, o, and A such that 0 < p,0, A < I. The second inequality follows from the properties
of weak conditionally typical subspaces and the Gentle Operator Lemma for ensembles, by taking n to be
sufficiently large (a discussion of these properties is in the appendix).
The Hayashi-Nagaoka operator inequality applies to a positive operator T and an operator S where
0<8§5<TI[3231}): Pais
—(S+T) 2S(S+T) % <2(I - §)+4T.
VA L e

Choosing
S =1 1
T= 3 T
(t:m)#(1,1)

we can apply the above operator inequality to bound the first term on the RHS of (12) as

]EX" yo {Tr{(I — A11) Tynqy pxrayyn) Tyn)}}
/ < 2Exnye {Tr {(I = ;1) Tyngy pxcn(a)yn) Dye}}
| +4 Y0 Exeyn {Tr{llj, Oyngy pxeqyye Ty} ). (19)
(L,m)#(1,1)
We first consider bounding the first term on the RHS above. Consider that

~Exnyn {Tr {Il] ; Tyn(1) pxn(), vy Dynqy}}
=Exnyn {Tr {1 Mxnq1y Mxnq),ynq) Dxnqy O dyny pxe),ye@) Tynay}}
> Exn yn {Tr {TLxn(1),yr1) Pxn(1),yn1)}}
= Exny» {||IL pxn(1),ym) T = px=y,v=wll; }
—Exnyn {|[Tyny px~q),v») Dye@) = pxe@) vl }
= Exny» {|[Txny pxm),ym@) Dxny = pxn), vyl )}
>1—c—6y/e. (15)

The above inequalities follow by employing the Gentle Operator Lemma for ensembles, (13), and the below
inequalities that follow from the discussion in the appendix:

Exny» {Tr{llx~qy px~),y=)}} 21— ¢, (16)
Exnyn {Tr{llyn1) pxn)y~}} 21— (17)
Exnyn {TH{IL pxn(),yny}} 2 1 — € (18)

Exnyn {Tr{llx~),ynq) Pxn)yr)}} 21— ¢ (19)

This bound then implies that

]Exn’yn {’I‘r{([ - Hll’l) Hyn(l) pxn(l),yn(l) Hyn(l)}} <e+ 6\/2 (20)

L R
c’%zlé%w e
fr/jﬂw‘; '@ hl/ﬂ/{ﬂ\
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The bound in (14) reduces to the following one after applying (20):

P <2(e+6ve)+4 Y Exnyn {Tr{ll,, ynq) px~)¥~) Oynq}}-
Lm)#(1,1)

We can expand the doubly-indexed sum on the RHS above:

z Exnyn {Tr {II} ,, Oy~q) Px @)y~ Oy~a)}} =
(1,m)#(1,1)

ZExn,yn {Tr {11} ; Mynqy pxn)yr@) Ty~ }}
A1

+ 3 Exnyn {Tr {Il} 1 Hyny pxeq)y= Tye}}
m#1

+ Y Exeye {Tr{Il, Oynq) pxeae@ Dyn}}- (21)
1#1, m#1

We begin by bounding the first term on the RHS above. Consider the following chain of inequalities:
Y Exnyn {Tr {IIlynqy pxn,ye@ Dye@}}
1#1

=3 Eyn {Tr {Il Ex» {Tlxn() Mxn.y~) Mm@} Ty Exe {pxr@)y @} Dy~ }}
1#1

=3 By~ {Tr {TL Ex« {Txn Dxn@vm) Txn} T yeq) pye) Tyee}}
1#1 - I3

< 27 HEBM N Eyo {Tr {T1 Exn {Txng) Mxn,vn@ Dxn} Tlyn})
— T T s

= o~ HBM =83 Eyn yo {Tr {Txny ) Mo T lyngr) T Ixn} )

1#1
< 2_"’[H(B|Y)_6] Z IEXn’Yn {Tr {Hxn(l)’yn(l) }}
1#1 N

< 9—nl[H(B|Y)=4] onlH(BIXY)+]

— 2—n[I(X;B|Y)—-26] L =~ (22)

The first equality follows by substitution and because X™ () and X" (1) are independent—the senders choose
the code randomly in such a way that this is true. The second equality follows because Exn { 0 Xn(l)’yn(l)} =

pyn(1)- The first inequality follows by applying the following operator inequality for weak conditionally
typical subspaces:

e pyn Tyn < 27"HEY) = 1,
The third equality is from cyclicity of trace. The second inequality is from

Mgn I Myn T Mgn < Mgn I Mpn < Ipn < 1.

The final inequality follows from the bound on the rank of the conditionally typical projector.
We employ a different argument to bound the second term in (21). Consider the following chain of

T
I

10




inequalities:

> Exnyn {Tr {1l o Tynqry pxnq),yn) Ty=y}}
m#1

=D Exey» {Tr{Il x|

xn(1),yn(my Mxn(1) I Myn(1) pxnq)ye) dyney}}
e

m#l —
<@UAEXVN ™ Byn o {Tr {TL Txn (1) pxm () ¥n(m) Wenga) T yny pxm, vy Ty}
\~\\_/_,_/’/ m#1

= rHBIXNH N "By {Tr {1 Tixn(1) Eyn {pxnq),ynem} Dxn) T Ey» {Tlyny pxny,yn) Ty} }}

m#l
= orlHEXNHS " B {Tr {Tl Moy pxn(a) Txnty T By {Tlyn(1) pxn(),yn(a) Myn(ay 1} (23)
m#£1 W Rl =V

The first equality follows by substitution. The first inequality follows from the following operator inequality:
Moy < PHBXH [ L o T < BN

The second equality follows from the fact that Y™ (m) and Y™ (1) are independent, and the third equality
follows because Eyn { pxn(1),yn(m)} = pxn(1). Continuing, we have

< gMABIXNH] 9mnlHE S 7 Exen yn {Tr {I Mxngy) T Iynry pxnny vy Mye}}
m#l

= grlH(BIXY)+8] g=nlH(BIX) =8 N Ey yu {Tr {Tlyn(ay I Mxn(ay I Myn(1y pxnq),ye}}
m#l

< 2n[H(B|XY)+6] 2—n[H(B|X)—6] Z Exn yn {Tr {PXﬂ(l) Y"(l)}}
m#l
< onlH(BIXY)+8] 9-n[H(BIX)=¢] ps

_ o—nlI(Y:BIX)-28] pp (24)

The first inequality follows from the operator inequality
yn pyn Tgn < 27 MHEXOAL,,,
The first equality is cyclicity of trace, and the second inequality follows because
Hyn I Mpn I e < Tyn T Mye < Ty < 1.
Finally, we obtain a bound on the last term in (21) with a slightly different argument:

> Exnyn {Tr{Il,, Dynq) pxnq)ye@) Oyee)}}
1#1, m#1

> Exeyn {Tr{Il Oxnqy Mxng,ynm) Dxng T ynay pxn),ynm Dyna}}
I#1, m#1

= > Eyn {Tr{ll Ex» {Tlxng) Oxnq)yn(m Oxe@} D ynay Exs {pxn@),y=)} Ty=)}}
1#1, m#1

> Eyn {Tr {1 Exn {llxn@ Mxn@)ynm) Dxn@y} O lynqy pyn@) Dyny}}
1#1, m#1

< Y Eyn {Tr {1 Ex-~ {Tlxn@ Dxn@)yeem Dxa@y} T pynay}}
I#1, m#1

= Y Tr{IEx~{Txng Eyn {Ilxn@) yr(m)} Oxn@} T Eyn {pyay}}

W e
N \v
\)(\"‘)\ o D v
T T ey (o 1’)2@7
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The first equality follows by substitution. The second equality follows from the independence of X™ () and
X™(1). The third equality follows because Ex» {pxn(1),y»(1)} = py~(1)- The first inequality follows from
the fact that py» and IIy» commute and thus IIyn pyn Ilyn = (/Pym Hyn (/Pyn < pyn. The fourth equality
follows from the independence of Y™ (m) and Y™ (1). Continuing, we have

= Y. Tr{Ex {lxng) Eyn {Tlxr,ynem} Mm@} T p%" T}
1#1, m#1
<2 MHE=4 N Ty {Exn {Tixngy Eyn {Tlxn@,ynim)} Mxn} T}
1#1, m#£1
=27"HB)= N Eyn ym {Tr {Tlxn ),y (m) Dxngy T xnqy }
1#1, m#1

<27 B0 R T Exeye {Tr {Txeq),ynom }}
1#1, m#1
< 2—n[H(B)—6] 2n[H(B|XY)+6] LM

— 2—n[I(XY;B)-—26] LM. (26)

The first equality follows because Eyn { pyn(l)} = p®" and from cyclicity of trace. The first inequality is
from the following operator inequality:

I p®n o< 2—n[H(B)—6]H.

The second equality is from cyclicity of trace and factoring out the expectations. The second inequality is
from the operator inequality
My T Mgn < Mg < 1.

The final inequality is from the bound on the rank of the weak conditionally typical projector.
Combining everything together, we get the following bound on the expectation of the average error
probability:

IEX",Y"' {ﬁe} S 2 (€+ 7\/2) +4 (L 2—n[I(X;B|Y)—2<§] +M 2—n[I(Y;B|X)—26] +LM 2—n[I(XY;B)—25]) .

Thus, we can choose the message sizes to be as follows:
L= 2n[R1—36]’
M= 2n[R2—36],
so that the expectation of the average error probability vanishes in the asymptotic limit whenever the rates
R; and Rj obey the following inequalities:
R -6 < I(X;BJY),
Ry -6 < I(Y;B|X),
Ry + Ry, —46 < I(XY;B).
O

A casual glance at the above proof might lead one to believe it is just a straightforward extension of
the “usual” proofs of the HSW theorem [35, 57, 15, 38, 68], but it differs from these and extends them non
trivially in several regards. First, we choose the square-root POVM in (9) in a particular way—specifically,
the layering of projectors is such that the projector of size = 2™(BIXY) is surrounded by the projector
of size ~ 2H(BIX)  which itself is surrounded by the projector of size =~ 2*7(B). If one were to place
the projector of size ~ 2"H(BIY) somewhere in the square-root POVM, this leads to difficulties with non-
commutative projectors (discussed in earlier versions of this paper on the arXiv). So, our second observation
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