Entanglement Boosts Quantum Turbo Codes

Mark M. Wilde

School of Computer Science McGill University

Joint work with **Min-Hsiu Hsieh** arXiv:1010.???

Seminar for the Quantum Computing Group at McGill Montreal, Quebec, Canada Wednesday, September 29, 2010

Overview

- Brief review of **quantum error correction** (entanglement-assisted as well)
- Review of quantum convolutional codes and their properties
- Adding **entanglement assistance** to quantum convolutional encoders
- Review of quantum turbo codes and their decoding algorithm
- Results of **simulating** entanglement-assisted turbo codes

Quantum Error Correction

Shor, PRA 52, pp. R2493-R2496 (1995).

Stabilizer Formalism

Laflamme et al., Physical Review Letters 77, 198-201 (1996).

Distance of a Quantum Code

Distance is one indicator of a code's error correcting ability

It is the **minimum weight** of a logical operator that changes the encoded quantum information in the code

To determine distance, feed in X,Y, Z acting on logical qubits and I, Z acting on ancillas:

Distance is the minimum weight of all resulting operators

Maximum Likelihood Decoding

Find the most likely error consistent with the channel model and the syndrome

MLD decision is $\operatorname{argmax}_R \Pr\{R|S^x\}$

Entanglement-Assisted Quantum Error Correction

Brun, Devetak, Hsieh. Science (2006)

Entanglement-Assisted Stabilizer Formalism

Unencoded Stabilizer

Encoded Stabilizer

Unencoded Logical Operators Encoded Logical Operators

Distance of an EA Quantum Code

Distance definition is nearly the same

It is the **minimum weight** of a logical operator that changes the encoded quantum information in the code

To determine distance, feed in *X*, *Y*, *Z* acting on logical qubits, *I*, *Z* acting on ancillas, and *I* acting on half of ebits:

Distance is the minimum weight of all resulting operators

EA Maximum Likelihood Decoding

Quantum Convolutional Codes

H. Ollivier and J.-P. Tillich, "Description of a quantum convolutional code," PRL (2003)

State Diagram

Useful for analyzing the properties of a quantum convolutional code

How to construct? Add an edge from one memory state to another if a logical operator and ancilla operator connects them:

Catastrophicity

Quantum Convolutional Decoder

Catastrophic error propagation!

Catastrophicity (ctd.)

Check state diagram for cycles of zero physical weight with non-zero logical weight

(same as classical condition)

Viterbi. Convolutional codes and their performance in communication systems. IEEE Trans. Comm. Tech. (1971)

Recursiveness

A **recursive encoder** has an *infinite response* to a weight-one logical input

No-Go Theorem

Both **recursiveness** and **non-catastrophicity** are desirable properties for a quantum convolutional encoder when used in a quantum turbo code

But a quantum convolutional encoder cannot have both! (Theorem 1 of PTO)

Idea: Add Entanglement

State Diagram

Add an edge from one memory state to another if a logical operator and identity on ebit connects them:

$$(M_{i-1}: L_i: I)U = (P_i: M_i)$$

State diagram for EA example encoder

Tracks the flow of logical operators through the convolutional encoder

Catastrophicity

Quantum Convolutional Decoder

Catastrophic error propagation eliminated! (Bell measurements detect Z errors)

Catastrophicity (ctd.)

Check state diagram for cycles of zero physical weight with non-zero logical weight

Recursiveness

A **recursive encoder** has an *infinite response* to a weight-one logical input

Non-Catastrophic and Recursive Encoder

Entanglement-assisted encoders can satisfy both properties simultaneously! M. M. Wilde and M.-H. Hsieh, "Entanglement boosts quantum turbo codes," In preparation.

Quantum Turbo Codes

A quantum turbo code consists of two interleaved and serially concatenated quantum convolutional encoders

Performance **appears to be good** from the results of numerical simulations

How to decode a Quantum Turbo Code?

Do this last part with an iterative decoding algorithm

Iterative Decoding

Three steps for each convolutional code:

- 1) backward recursion
- 2) forward recursion
- 3) local update

Decoders feed **probabilistic estimates** back and forth to each other until they converge on an estimate of the error

Iterative Decoding (Backward Recursion)

Use probabilistic estimates of "next" memory and logical operators, and the channel model and syndrome, to give soft estimate of "previous memory":

Iterative Decoding (Forward Recursion)

Use probabilistic estimates of "previous" memory and logical operators and the channel model and syndrome, to give soft estimate of "next memory":

Iterative Decoding (Local Update)

Use probabilistic estimates of "previous" memory, "next memory", and syndrome to give soft estimate of logical ops and channel: **Estimate Previous Memory** "Previous memory" Channel model Log. op. estimate "Next memory" syndrome prob. estimate Next Memory Quantum Convolutional Decoder

Iterative Decoding of a Quantum Turbo Code

Simulations

Selected an encoder randomly

with one information qubit, two ancillas, and three memory qubits

Non-catastrophic and quasi-recursive

Distance spectrum:

 $11x^5 + 47x^6 + 253x^7 + 1187x^8 + 6024x^9 + 30529x^{10} + 153051x^{11} + 771650x^{12} \\$

Serial concatenation with itself gives a rate 1/9 quantum turbo code

Replacing both ancillas with ebits gives EA encoder

Non-catastrophic and recursive

Distance spectrum improves dramatically:

 $2x^9 + x^{10} + 5x^{11} + 8x^{12}$

Serial concatenation with itself gives a rate 1/9 quantum turbo code with 8/9 entanglement consumption rate

Compare with the Hashing Bounds

Bennett *et al.*, "Entanglement-assisted classical capacity," (2002) Devetak *et al.*, "Resource Framework for Quantum Shannon Theory (2005)

Unassisted Turbo Code

Fully Assisted Turbo Code

"Inner" Entanglement Assisted Turbo Code

"Outer" Entanglement Assisted Turbo Code

Quasi-recursiveness does not explain good performance of unassisted code!

Adding Noise to Bob's Share of the Ebits

No-Go Theorem for Subsystem or Classically-Enhanced Codes

Encoder of the above form cannot be **recursive** and **non-catastrophic**

Proof: Consider recursive encoder.

Change gauge qubits and cbits to ancillas (preserves recursiveness) Must be catastrophic (by PTO)

Change ancillas back to gauge qubits and cbits (preserves catastrophicity).

Conclusion

- Entanglement gives both a theoretical and practical boost to quantum turbo codes
- Recursiveness is essential to good performance of the assisted code (not mere quasi-recursiveness)
- No-Go Theorem for subsystem and classically-enhanced encoders

Open question: Find an EA turbo code with positive catalytic rate that outperforms a PTO encoder

Open question: Can turbo encoders with logical qubits, cbits, and ebits come close to achieving trade-off capacity rates?