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Quantum Shannon Theory
Channel Capacities

Goal: Transmit information over noisy quantum channels

Capacity is the maximum rate of reliable communication

Measured in bits per channel use

Quantum channels have different types of capacities

General case: Optimization over arbitrarily many parallel uses

Single-Letter case: Optimization over only a single channel use
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Quantum Shannon Theory
Quantum Channels
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Capacity Regions

Important special cases:

Simultaneous quantum and classical communication1

Entanglement-assisted classical communication2

Time-Sharing between endpoint capacities: not optimal
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Triple Trade-Off
Simultaneous communication of classical and quantum information
with limited entanglement-assistance3

Optimal rates require optimization over arbitrarily many parallel
channel uses
Single-letterization of two special cases implies whole triple trade-off
region3
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M.-H. Hsieh and M. M. Wilde. arXiv:0811.4227, 2008.
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Quantum Hadamard Channels
Definition

Quantum channel NA→B has isometric extension UA→BE
N

E
A’ UA→BE

N

B

N c : Complementary Channel

NA→B = TrE ◦ UA→BE

(N c)A→E = TrB ◦ UA→BE

Entanglement-Breaking channel:
Outputs separable state if input entangled state

Hadamard channel:
Complementary channel is entanglement-breaking
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Quantum Hadamard Channels
Examples

Generalized dephasing channel represents loss of coherence
I Pure basis state unaffected, superpositions get mixed

Universal 1→ N cloning channel NN

I Input: 1 qubit, Output: N approximate copies
I Maximal Copy Fidelity, Independent of Input

Unruh Channel NU : Arises in QFT
I Mathematical Structure: Block Diagonalab

I NU =
⊕∞

N=1 pNNN

a
K. Brádler, P. Hayden, and P. Panangaden. JHEP, 2009(08):074, 2009.

b
K. Brádler. arXiv:0903.1638, 2009.
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Capacity Region for Hadamard Channels
Degradable Channels

Degradable channel:
Bob can simulate Eve

Degrading map T : N c = T ◦ N
Hadamard channels are degradable

Structure of degrading map:

T = T2 ◦ T1

T1: von Neumann measurement

T2: conditional state preparation

Gives a single-letter capacity formula

k
B

E

σk
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Capacity Region for Hadamard Channels
Single-letterization

Input state ρ:
E

A’ UA→BE
N

B

A

X

|φx〉AA′

pX(x) pX(x)

UA′→BE
N |φAA′

x 〉{

Classical-Quantum trade-off curve:
fλ(N ) = maxρ I (X ; B)N (ρ) + λI (A〉BX )N (ρ)

Entanglement-assisted Classical trade-off curve:
gλ(N ) = maxρ I (AX ; B)N (ρ) − λH(A|X )N (ρ)

Single-letterization: fλ(N⊗k) = kfλ(N ), gλ(N⊗k) = kgλ(N )
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Trade-off curves for the Dephasing Channel
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Figure: Parametrization for qubit p-dephasing channel, with p = 0, 0.1, . . . , 0.9, 1:
N = (1− p)I + p∆, I identity channel, ∆ Completely dephasing channel
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Trade-off curves for 1→ N Cloning Channels
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Figure: Parametrization for 1→ N Cloning Channels, with N = 1, 2, 3, 5, 8, 12, 24
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Parametrization of the Triple Trade-Off Region
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Figure: Unruh channel with acceleration parameter z = 0.95: z = 0 identity
channel, z → 1 infinite acceleration
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Measuring Improvement over Time-Sharing
Want a measure of relative improvement
Ratio of Area under curves
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Figure: Relative improvement for (a) classical-quantum and (b)
entanglement-assisted classical trade-off
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Summary

Single-letterization of the whole triple trade-off region for Hadamard
channels

Optimal coding strategy for Hadamard channels completely
understood

Parametrization of whole 3D region for 3 natural subclasses of
Hadamard channels

Introduction of measure of relative gain

Important to consider optimal coding strategy to use resources to full
potential
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