Trade-off capacities of the quantum Hadamard channels

Mark M. Wilde

Joint work with Kamil Brádler, Patrick Hayden, Dave Touchette School of Computer Science, McGill University

February 19, 2010

Presentation for the ERATO-SORST Quantum Computation and Information Project, Japan Science and Technology Agency 5-28-3, Hongo, Bunkyo-ku, Tokyo, Japan

arXiv:1001.1732

Mark M. Wilde (Joint work with Kamil BradTrade-off capacities of the quantum Hadamar

February 19, 2010 1 / 14

4 2 5 4 2 5

Channel Capacities

• Goal: Transmit information over noisy quantum channels

- Goal: Transmit information over noisy quantum channels
- Capacity is the maximum rate of reliable communication

- Goal: Transmit information over noisy quantum channels
- Capacity is the maximum rate of reliable communication
- Measured in bits per channel use

- Goal: Transmit information over noisy quantum channels
- Capacity is the maximum rate of reliable communication
- Measured in bits per channel use
- Quantum channels have different types of capacities

- Goal: Transmit information over noisy quantum channels
- Capacity is the maximum rate of reliable communication
- Measured in bits per channel use
- Quantum channels have different types of capacities
- General case: Optimization over arbitrarily many parallel uses

- Goal: Transmit information over noisy quantum channels
- Capacity is the maximum rate of reliable communication
- Measured in bits per channel use
- Quantum channels have different types of capacities
- General case: Optimization over arbitrarily many parallel uses
- Single-Letter case: Optimization over only a single channel use

Quantum Channels

U: Quantum channel
Input Alice: A', Output Bob: B, Environment Eve: E

Quantum Channels

 U: Quantum channel Input Alice: A', Output Bob: B, Environment Eve: E
Classical message: M, M

Quantum state: A_1 , B_1 , Purifying system: RShared Entanglement: T_A , T_B

Quantum Channels

- U: Quantum channel Input Alice: A', Output Bob: B, Environment Eve: E
- Classical message: M, M
 Quantum state: A₁, B₁, Purifying system: R
 Shared Entanglement: T_A, T_B
- Encoder: \mathcal{E} , Decoder: \mathcal{D}

• Important special cases:

Mark M. Wilde (Joint work with Kamil BradTrade-off capacities of the quantum Hadamar

¹I. Devetak and P. W. Shor. Communications in Mathematical Physics, 256:287303, 2005.

² P. W. Shor. Quantum Information, Statistics, Probability, pages 144–152. Rinton Press Inc., (quant-ph/0402129), 2004 ... C

- Important special cases:
- Simultaneous quantum and classical communication¹

¹I. Devetak and P. W. Shor. Communications in Mathematical Physics, 256:287303, 2005.

² P. W. Shor. Quantum Information, Statistics, Probability, pages 144–152. Rinton Press, Inc., (quant-ph/0402129), 2004 ... 🔿

- Important special cases:
- Simultaneous quantum and classical communication¹
- Entanglement-assisted classical communication²

¹I. Devetak and P. W. Shor. Communications in Mathematical Physics, 256:287303, 2005.

²P. W. Shor. Quantum Information, Statistics, Probability, pages 144–152. Rinton Press, Inc., (quant-ph/0402129), 2004 .

- Important special cases:
- Simultaneous quantum and classical communication¹
- Entanglement-assisted classical communication²
- Time-Sharing between endpoint capacities: not optimal

¹I. Devetak and P. W. Shor. Communications in Mathematical Physics, 256:287303, 2005.

² P. W. Shor. Quantum Information, Statistics, Probability, pages 144–152. Rinton Press Inc., (quant-ph/0402129), 2004 C

Mark M. Wilde (Joint work with Kamil Brá(Trade-off capacities of the quantum Hadamar

- Important special cases:
- Simultaneous quantum and classical communication¹
- Entanglement-assisted classical communication²
- Time-Sharing between endpoint capacities: not optimal

¹I. Devetak and P. W. Shor. Communications in Mathematical Physics, 256:287303, 2005.

² P. W. Shor. Quantum Information, Statistics, Probability, pages 144–152. Rinton Press Inc., (quant-ph/0402129), 2004 R. C.

Mark M. Wilde (Joint work with Kamil Brá(Trade-off capacities of the quantum Hadamar

Triple Trade-Off

• Simultaneous communication of classical and quantum information with limited entanglement-assistance³

³M.-H. Hsieh and M. M. Wilde. arXiv:0811.4227, 2008.

Mark M. Wilde (Joint work with Kamil Bratrade-off capacities of the quantum Hadamar

Triple Trade-Off

- Simultaneous communication of classical and quantum information with limited entanglement-assistance³
- Optimal rates require optimization over arbitrarily many parallel channel uses

³M.-H. Hsieh and M. M. Wilde. arXiv:0811.4227, 2008.

Mark M. Wilde (Joint work with Kamil BracTrade-off capacities of the quantum Hadamar

Triple Trade-Off

- Simultaneous communication of classical and quantum information with limited entanglement-assistance³
- Optimal rates require optimization over arbitrarily many parallel channel uses
- Single-letterization of two special cases implies whole triple trade-off region³

Mark M. Wilde (Joint work with Kamil Brá(Trade-off capacities of the quantum Hadamar

• Quantum channel $\mathcal{N}^{A \rightarrow B}$ has isometric extension $U_{\mathcal{N}}^{A \rightarrow BE}$

• \mathcal{N}^{c} : Complementary Channel

• Quantum channel $\mathcal{N}^{A \to B}$ has isometric extension $U_{\mathcal{N}}^{A \to BE}$

• \mathcal{N}^{c} : Complementary Channel • $\mathcal{N}^{A \to B} = \operatorname{Tr}_{E} \circ U^{A \to BE}$

• Quantum channel $\mathcal{N}^{A \to B}$ has isometric extension $U_{\mathcal{N}}^{A \to BE}$

• \mathcal{N}^{c} : Complementary Channel • $\mathcal{N}^{A \to B} = \operatorname{Tr}_{E} \circ U^{A \to BE}$ $(\mathcal{N}^{c})^{A \to E} = \operatorname{Tr}_{B} \circ U^{A \to BE}$

• Quantum channel $\mathcal{N}^{A \to B}$ has isometric extension $U_{\mathcal{N}}^{A \to BE}$

- \mathcal{N}^c : Complementary Channel
- $\mathcal{N}^{A \to B} = \text{Tr}_E \circ U^{A \to BE}$ $(\mathcal{N}^c)^{A \to E} = \text{Tr}_B \circ U^{A \to BE}$
- Entanglement-Breaking channel: Outputs separable state if input entangled state

• Quantum channel $\mathcal{N}^{A \rightarrow B}$ has isometric extension $U_{\mathcal{N}}^{A \rightarrow BE}$

- \mathcal{N}^c : Complementary Channel
- $\mathcal{N}^{A \to B} = \operatorname{Tr}_{E} \circ U^{A \to BE}$ $(\mathcal{N}^{c})^{A \to E} = \operatorname{Tr}_{B} \circ U^{A \to BE}$
- Entanglement-Breaking channel: Outputs separable state if input entangled state
- Hadamard channel:

Complementary channel is entanglement-breaking

Examples

- Generalized dephasing channel represents loss of coherence
 - Pure basis state unaffected, superpositions get mixed

Examples

- Generalized dephasing channel represents loss of coherence
 - Pure basis state unaffected, superpositions get mixed
 - Universal $1 \rightarrow N$ cloning channel \mathcal{N}_N
 - Input: 1 qubit, Output: N approximate copies
 - Maximal Copy Fidelity, Independent of Input

Examples

- Generalized dephasing channel represents loss of coherence
 - Pure basis state unaffected, superpositions get mixed
 - Universal $1 \rightarrow N$ cloning channel \mathcal{N}_N
 - Input: 1 qubit, Output: N approximate copies
 - Maximal Copy Fidelity, Independent of Input

- Unruh Channel \mathcal{N}_U : Arises in QFT
 - Mathematical Structure: Block Diagonal^{ab}
 - $\mathcal{N}_U = \bigoplus_{N=1}^{\infty} p_N \mathcal{N}_N$

^aK. Brádler, P. Hayden, and P. Panangaden. JHEP, 2009(08):074, 2009. ^bK. Brádler. arXiv:0903.1638, 2009.

• Degradable channel: Bob can simulate Eve

- Degradable channel: Bob can simulate Eve
- Degrading map \mathcal{T} : $\mathcal{N}^{c} = \mathcal{T} \circ \mathcal{N}$

- Degradable channel: Bob can simulate Eve
- Degrading map $\mathcal{T}: \ \mathcal{N}^{c} = \mathcal{T} \circ \mathcal{N}$
- Hadamard channels are degradable

- Degradable channel: Bob can simulate Eve
- Degrading map $\mathcal{T} \colon \mathcal{N}^{\mathsf{c}} = \mathcal{T} \circ \mathcal{N}$
- Hadamard channels are degradable
- Structure of degrading map:

 $\mathcal{T}=\mathcal{T}_2\circ\mathcal{T}_1$

- \mathcal{T}_1 : von Neumann measurement
- \mathcal{T}_2 : conditional state preparation
- Gives a single-letter capacity formula

• Classical-Quantum trade-off curve: $f_{\lambda}(\mathcal{N}) = \max_{\rho} I(X; B)_{\mathcal{N}(\rho)} + \lambda I(A \mid BX)_{\mathcal{N}(\rho)}$

- Classical-Quantum trade-off curve: $f_{\lambda}(\mathcal{N}) = \max_{\rho} I(X; B)_{\mathcal{N}(\rho)} + \lambda I(A \mid BX)_{\mathcal{N}(\rho)}$
- Entanglement-assisted Classical trade-off curve: $g_{\lambda}(\mathcal{N}) = \max_{\rho} I(AX; B)_{\mathcal{N}(\rho)} - \lambda H(A|X)_{\mathcal{N}(\rho)}$

- Classical-Quantum trade-off curve: $f_{\lambda}(\mathcal{N}) = \max_{\rho} I(X; B)_{\mathcal{N}(\rho)} + \lambda I(A \rangle BX)_{\mathcal{N}(\rho)}$
- Entanglement-assisted Classical trade-off curve: $g_{\lambda}(\mathcal{N}) = \max_{\rho} I(AX; B)_{\mathcal{N}(\rho)} - \lambda H(A|X)_{\mathcal{N}(\rho)}$
- Single-letterization: $f_{\lambda}(\mathcal{N}^{\otimes k}) = kf_{\lambda}(\mathcal{N}), \ g_{\lambda}(\mathcal{N}^{\otimes k}) = kg_{\lambda}(\mathcal{N})$

Trade-off curves for the Dephasing Channel

Figure: Parametrization for qubit p-dephasing channel, with p = 0, 0.1, ..., 0.9, 1: $\mathcal{N} = (1 - p)I + p\Delta$, I identity channel, Δ Completely dephasing channel

February 19, 2010 10 / 14

・ 何 ト ・ ヨ ト ・ ヨ ト

Trade-off curves for $1 \rightarrow N$ Cloning Channels

Figure: Parametrization for $1 \rightarrow N$ Cloning Channels, with N = 1, 2, 3, 5, 8, 12, 24

Parametrization of the Triple Trade-Off Region

Figure: Unruh channel with acceleration parameter z = 0.95: z = 0 identity channel, $z \rightarrow 1$ infinite acceleration

Measuring Improvement over Time-Sharing

- Want a measure of relative improvement
- Ratio of Area under curves

Figure: Relative improvement for (a) classical-quantum and (b) entanglement-assisted classical trade-off

Summary

- Single-letterization of the whole triple trade-off region for Hadamard channels
- Optimal coding strategy for Hadamard channels completely understood
- Parametrization of whole 3D region for 3 natural subclasses of Hadamard channels
- Introduction of measure of relative gain
- Important to consider optimal coding strategy to use resources to full potential