Trade-off capacities of the quantum Hadamard channels

Mark M. Wilde

Joint work with
Kamil Brádler, Patrick Hayden, Dave Touchette
School of Computer Science, McGill University

February 19, 2010

Presentation for the ERATO-SORST Quantum Computation and Information Project,
Japan Science and Technology Agency 5-28-3, Hongo, Bunkyo-ku, Tokyo, Japan

arXiv:1001.1732
Goal: Transmit information over noisy quantum channels
Quantum Shannon Theory

Channel Capacities

- Goal: Transmit information over noisy quantum channels
- Capacity is the maximum rate of reliable communication
Quantum Shannon Theory

Channel Capacities

- **Goal:** Transmit information over noisy quantum channels
- **Capacity:** The maximum rate of reliable communication
- **Measured:** In bits per channel use
Quantum Shannon Theory

Channel Capacities

- Goal: Transmit information over noisy quantum channels
- Capacity is the maximum rate of reliable communication
- Measured in bits per channel use
- Quantum channels have different types of capacities
Quantum Shannon Theory

Channel Capacities

- Goal: Transmit information over noisy quantum channels
- Capacity is the maximum rate of reliable communication
- Measured in bits per channel use
- Quantum channels have different types of capacities
- General case: Optimization over arbitrarily many parallel uses
Quantum Shannon Theory

Channel Capacities

- **Goal**: Transmit information over noisy quantum channels
- **Capacity**: is the maximum rate of reliable communication
- **Measured**: in bits per channel use
- **Quantum channels**: have different types of capacities
- **General case**: Optimization over arbitrarily many parallel uses
- **Single-Letter case**: Optimization over only a single channel use
Quantum Shannon Theory

Quantum Channels

- \mathcal{U}: Quantum channel
 - Input Alice: A', Output Bob: B, Environment Eve: E
Quantum Shannon Theory
Quantum Channels

- \(\mathcal{U} \): Quantum channel
 - Input Alice: \(A' \), Output Bob: \(B \), Environment Eve: \(E \)
- Classical message: \(M, \hat{M} \)
- Quantum state: \(A_1, B_1 \), Purifying system: \(R \)
- Shared Entanglement: \(T_A, T_B \)
Quantum Shannon Theory
Quantum Channels

- \mathcal{U}: Quantum channel
 Input Alice: A', Output Bob: B, Environment Eve: E

- Classical message: M, \hat{M}
 Quantum state: A_1, B_1, Purifying system: R
 Shared Entanglement: T_A, T_B

- Encoder: \mathcal{E}, Decoder: \mathcal{D}
Capacity Regions

- Important special cases:

Capacity Regions

- Important special cases:
- Simultaneous quantum and classical communication\(^1\)

Capacity Regions

- Important special cases:
 - Simultaneous quantum and classical communication\(^1\)
 - Entanglement-assisted classical communication\(^2\)

\(^1\) I. Devetak and P. W. Shor. Communications in Mathematical Physics, 256:287303, 2005.

Capacity Regions

- Important special cases:
 - Simultaneous quantum and classical communication\(^1\)
 - Entanglement-assisted classical communication\(^2\)
 - **Time-Sharing** between endpoint capacities: not optimal

Capacity Regions

- Important special cases:
 - Simultaneous quantum and classical communication\(^1\)
 - Entanglement-assisted classical communication\(^2\)
 - **Time-Sharing** between endpoint capacities: not optimal

Triple Trade-Off

- Simultaneous communication of classical and quantum information with limited entanglement-assistance

Triple Trade-Off

- Simultaneous communication of classical and quantum information with limited entanglement-assistance\(^3\)
- Optimal rates require optimization over arbitrarily many parallel channel uses

Triple Trade-Off

- Simultaneous communication of classical and quantum information with limited entanglement-assistance
- Optimal rates require optimization over arbitrarily many parallel channel uses
- Single-letterization of two special cases implies whole triple trade-off region

Quantum Hadamard Channels

Definition

- Quantum channel $\mathcal{N}^{A\rightarrow B}$ has isometric extension $U_{\mathcal{N}}^{A\rightarrow BE}$

- \mathcal{N}^c: Complementary Channel
Quantum Hadamard Channels

Definition

- Quantum channel $\mathcal{N}^{A \rightarrow B}$ has isometric extension $U_{\mathcal{N}}^{A \rightarrow BE}$

- \mathcal{N}^c: Complementary Channel
 - $\mathcal{N}^{A \rightarrow B} = \text{Tr}_E \circ U^{A \rightarrow BE}$
Quantum Hadamard Channels

Definition

- Quantum channel $\mathcal{N}^{A\rightarrow B}$ has isometric extension $U_{\mathcal{N}}^{A\rightarrow BE}$

- \mathcal{N}^{c}: Complementary Channel

$\mathcal{N}^{A\rightarrow B} = \text{Tr}_E \circ U_{\mathcal{N}}^{A\rightarrow BE}$

$(\mathcal{N}^{c})^{A\rightarrow E} = \text{Tr}_B \circ U_{\mathcal{N}}^{A\rightarrow BE}$
Quantum Hadamard Channels

Definition

- Quantum channel $\mathcal{N}^{A\rightarrow B}$ has isometric extension $U_{\mathcal{N}}^{A\rightarrow BE}$

\mathcal{N}^{c}: Complementary Channel

- $\mathcal{N}^{A\rightarrow B} = \text{Tr}_E \circ U_{\mathcal{N}}^{A\rightarrow BE}$
- $(\mathcal{N}^{c})^{A\rightarrow E} = \text{Tr}_B \circ U_{\mathcal{N}}^{A\rightarrow BE}$

- Entanglement-Breaking channel: Outputs separable state if input entangled state
Quantum Hadamard Channels

Definition

- Quantum channel $\mathcal{N}^{A\rightarrow B}$ has isometric extension $U_{\mathcal{N}}^{A\rightarrow BE}$

- \mathcal{N}^c: Complementary Channel
 $\mathcal{N}^{A\rightarrow B} = \text{Tr}_E \circ U^{A\rightarrow BE}$
 $(\mathcal{N}^c)^{A\rightarrow E} = \text{Tr}_B \circ U^{A\rightarrow BE}$

- Entanglement-Breaking channel: Outputs separable state if input entangled state

- Hadamard channel: Complementary channel is entanglement-breaking
Quantum Hadamard Channels

Examples

- Generalized dephasing channel represents loss of coherence
 - Pure basis state unaffected, superpositions get mixed
Quantum Hadamard Channels

Examples

- Generalized dephasing channel represents loss of coherence
 - Pure basis state unaffected, superpositions get mixed

- Universal $1 \rightarrow N$ cloning channel \mathcal{N}_N
 - Input: 1 qubit, Output: N approximate copies
 - Maximal Copy Fidelity, Independent of Input
Quantum Hadamard Channels

Examples

- Generalized dephasing channel represents loss of coherence
 - Pure basis state unaffected, superpositions get mixed

- Universal $1 \rightarrow N$ cloning channel \mathcal{N}_N
 - Input: 1 qubit, Output: N approximate copies
 - Maximal Copy Fidelity, Independent of Input

- Unruh Channel \mathcal{N}_U: Arises in QFT
 - Mathematical Structure: Block Diagonalab
 - $\mathcal{N}_U = \bigoplus_{N=1}^{\infty} p_N \mathcal{N}_N$

Capacity Region for Hadamard Channels

Degradable Channels

- Degradable channel:

 Bob can simulate Eve
Degradable Channels

- Degradable channel:
 Bob can simulate Eve

- Degrading map $\mathcal{T}: \mathcal{N} \circ \mathcal{T}$
Capacity Region for Hadamard Channels

Degradable Channels

- Degradable channel: *Bob can simulate Eve*
- Degrading map $\mathcal{T}: \mathcal{N}^c = \mathcal{T} \circ \mathcal{N}$
- Hadamard channels are degradable
Degradable channel:

Bob can simulate Eve

Degraded map $\mathcal{T}: \mathcal{N}^c = \mathcal{T} \circ \mathcal{N}$

Hadamard channels are degradable

Structure of degrading map:

$$\mathcal{T} = \mathcal{T}_2 \circ \mathcal{T}_1$$

- \mathcal{T}_1: von Neumann measurement
- \mathcal{T}_2: conditional state preparation
- Gives a single-letter capacity formula
Capacity Region for Hadamard Channels

Single-letterization

Input state ρ:

Classical-Quantum trade-off curve:

$$f_\lambda(N) = \max_\rho I(X;B)_N(\rho) + \lambda I(A\rangle BX)_N(\rho)$$

Entanglement-assisted Classical trade-off curve:

$$g_\lambda(N) = \max_\rho I(AX;B)_N(\rho) - \lambda H(A\mid X)_N(\rho)$$

Single-letterization:

$$f_\lambda(N \otimes k) = kf_\lambda(N), \quad g_\lambda(N \otimes k) = kg_\lambda(N)$$

Mark M. Wilde (Joint work with Kamil Brádler, Patrick Hayden, Dave Touchette) School of Computer Science, McGill University

February 19, 2010 9 / 14
Capacity Region for Hadamard Channels

Single-letterization

Input state ρ:

- Classical-Quantum trade-off curve:
 \[f_\lambda(N) = \max_\rho I(X; B)_N(\rho) + \lambda I(ABX)_N(\rho) \]
Capacity Region for Hadamard Channels

Single-letterization

Input state ρ:

- Classical-Quantum trade-off curve:
 $$f_\lambda(\mathcal{N}) = \max_{\rho} I(X;B)_{\mathcal{N}(\rho)} + \lambda I(A\rangle BX)_{\mathcal{N}(\rho)}$$

- Entanglement-assisted Classical trade-off curve:
 $$g_\lambda(\mathcal{N}) = \max_{\rho} I(AX;B)_{\mathcal{N}(\rho)} - \lambda H(A\mid X)_{\mathcal{N}(\rho)}$$
Capacity Region for Hadamard Channels

Single-letterization

- Classical-Quantum trade-off curve:
 \[f_\lambda(\mathcal{N}) = \max_\rho I(X; B)_{\mathcal{N}(\rho)} + \lambda I(A \rangle B X)_{\mathcal{N}(\rho)} \]

- Entanglement-assisted Classical trade-off curve:
 \[g_\lambda(\mathcal{N}) = \max_\rho I(AX; B)_{\mathcal{N}(\rho)} - \lambda H(A \mid X)_{\mathcal{N}(\rho)} \]

- Single-letterization: \(f_\lambda(\mathcal{N} \otimes k) = kf_\lambda(\mathcal{N}) \), \(g_\lambda(\mathcal{N} \otimes k) = kg_\lambda(\mathcal{N}) \)
Trade-off curves for the Dephasing Channel

Figure: Parametrization for qubit p-dephasing channel, with $p = 0, 0.1, \ldots, 0.9, 1$: $\mathcal{N} = (1 - p)I + p\Delta$, I identity channel, Δ Completely dephasing channel
Trade-off curves for $1 \rightarrow N$ Cloning Channels

Figure: Parametrization for $1 \rightarrow N$ Cloning Channels, with $N = 1, 2, 3, 5, 8, 12, 24$
Parametrization of the Triple Trade-Off Region

Figure: Unruh channel with acceleration parameter $z = 0.95$: $z = 0$ identity channel, $z \rightarrow 1$ infinite acceleration
Measuring Improvement over Time-Sharing

- Want a measure of relative improvement
- Ratio of Area under curves

Figure: Relative improvement for (a) classical-quantum and (b) entanglement-assisted classical trade-off
Summary

- Single-letterization of the whole triple trade-off region for Hadamard channels
- Optimal coding strategy for Hadamard channels completely understood
- Parametrization of whole 3D region for 3 natural subclasses of Hadamard channels
- Introduction of measure of relative gain
- Important to consider optimal coding strategy to use resources to full potential